
NAVAL POSTGRADUATE SCHOOL
Monterey, California

N

TI-ESIS

Case Study on Rapid Software Prototyping
and Automated Software Generation:

An Inertial Navigation System

by

Herbert GOnterberg

June 1989

Thesis Advisor: Luqi

Approved for public release; distribution is unlimlte. ."

\OTIC.ELECTE I1

89 9 12 014

UNCLASSIFIED

SECURITY CLASS Ca- --AGE

REPORT DOCUMENTATION PAGE
la REPORT SECURiT'y CLASS,-,CATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURiT' CLASSiFCA-T,Or A,THORTY 3 DISTR:BUTIONIAVAILABILITY OF REPORT

2b DECLASSIFiCATION, DONGRADING SCHEDULE Approved for public release; distribution is unlimited

4' PER-OR'11,NG ORGAN ZAT1ON REPORT NUMBERIS) S MONITORING ORGANIZATION REPORT NUMBER(S)

Et NAME OF PERFORMING ORGANIZATiO 4 6o OFF:CE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postg, aduate School 52 (1] National Science Foundation

1 [21 Office of Naval Research 131 NPS Research Council
6c ADDRESS Cit, State. and ZIP Cooe) 7,. ADDRESS (City, State, and ZIP Code)

(11 Washington, D.C. 20550
Monterey, CA 93943 12] 800 Quincy Street, Arlington, VA 22217 50CC0

13] Monterey, CA 93943

Ba NAME O FUI1'*D.C, SP4SOR NG 6O OF-,CE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN ZATION" (If applicable)

Bc ADDRESS (Cry, State. a.7d Z,PCoae) 10 SOURCE OF FUNDI%G NUMBERS
PROGRAM PROJECT TASK A'ORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 T!TLE (Include Securt) Class.'ftcatiton)

Case Study on Rapid Software Prototyping and Automated Software Generation: An Inertial Navigation System

12 PERSO%,NA A_'o4., Guinterberg. Herbert

13a TYPE 3t REPQ) 3 TIME CO.'EnED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Masters Thesis rPC,. TO 1989 June 98

16 SUPPLEVE% -a - A: - '
,

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

T7 CDS T, CO-ES I8 S-BJECT TERMS (Continue on reverse if necessary and identify by block numberJ

FEPD G=.j, , (Rapid Prototyping, Specification Language, Graphic Editor, Translator, Execution

Support System, Real-Time Programming, Parallell Execution, Ada)

!9 ABSt.C o 1,Ontinue or re.erise if neccssar) and identify by block number)
~.1

The discipline of software engineering is on the move from an \art"to an engineering science based on mathematical
rules. Along this way methods of rapid prototyping and tools for automatic program generation are being developed to
aid the process of software development. This thesis takes a real life example of an Inertial Navigation System and
develops It according to the automation principles for computer aided software development. The techniques of rapid
software prototyping are also applied to the same problem. The software prototype of the Inertial Navigation System can
further be run through The Computer Aided Prototyplng System (CAPS) to mechanically generate Ada software. All
implementation work is done in Ada as required by DoD for all embedded weapon systems. The two approaches will
be integrated for analysis.

20 D S' BUTION, AAiLAB LI
T

v QF ABSRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED
0SA;J4CLASi'iEDJJ, ED El 3A!,"E AS PP T El DT'C USEPS

22a NA.E 0' RES'.),S'BLE 'JV. AL 22b TELEPHONE (Include Area Code) 42c OFFICE SYMBOL
Luqi (408)646-2735 52LQ

DD FORM 1473, P 4 %.,;,; 83 APP ed !,oQ rra be used until exhausted SECURITY CLASSIFICATION ClF THIS PAGE
Al ie, edt-C -ASSFIE UNCLASSIFIED o, iSI-O6.2o.

Approved for public release; distribution is unlimited

Case Study on Rapid Software Prototyping
and Automated Software Generation:

An Inertial Navigation System

by

Herbert Gujnterberg
Lieutenant Commander, Federal German Navy

Submitted in partial fuitfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: _________________________________
HreGusgerbe rg

Approved by:/
Luqi, (thesis Advisor

Valdis Berzins, Seco'Rd Reader

Robert B. McGhee, Chairman, Department of Computer Science

ii

ABSTRACT

The discipline of software engineering is on the move from an "art" to an

engineering science based on mathematical rules. Along this way methods of rapid

prototyping and tools for automatic program generation are being developed to aid the

process of software development. This thesis takes a real life example of an Inertial

Navigation System and develops It according to the automation prdnciplZ f,-r rr.-nputer

aided software development. The techniques of rapid software prototyping are also

applied to the same problem. The software prototype of the Inertial Navigation System

can further be run through The Computer Aided Prototyping System (CAPS) to

mechanically generate Ada software. All implementation work is done in Ada as required

by DoD for all embedded weapon systems. The two approaches will be integrated for

analysis.

Accession 'F

NTIS GFA&I
DTIC TA3

Unanrnounc ed
Just ifleat Io

listributl on/

Availability Codms

. Avatt and/or
Dist Spiclal

TABLE OF CONTENTS

1. INTRODUCTION...1I

A. THE SOFTWARE CRISIS................................... 1

B. RAPID PROTOTYPING.................................... 2

C. FORMAL SOFTWARE ENGINEERING.......................... 3

11. THE PROTOTYPE APPROACH.................................. 5

A. ABOUT CAPS... 5

B. THE INS PROTOTYPE DEVELOPMENT IN PSDL................... 8

111. THE FORMAL SOFTWARE ENGINEERING APPROACH............... 16

A. PREFACE... 16

B. THE INITIAL PROBLEM STATEMENT......................... 16

C. REQUIREMENTS ANALYSIS................................. 16

1. The System's Environment Model.......................... 16

2. Goals and Functions of the System........................ 17

3. Constraints.. 17

4. Refined Goals.. 18

D. FUNCTIONAL SPECIFICATION.............................. 20

E. ARCHITECTURAL DESIGN................................. 29

IV. IMPLEMENTATION... 30

A. PREFACE.. 30

B. COMPILER.. 30

1. INTEGRADA.. 30

2. VERDIX.. 31

IV

C. CONCURRENCY AND EXTENSIBILITY......................... 31

D. TIMiNG CONSTRAINTS.................................... 34

E. PACKAGING... 35

1. Generic package DATA_STORAGE.......................... 35

2. Package TERMINAL..................................... 36

3. Generic package FLOATING_PO!NT_UTILITIES................. 36

4. Package NAVUTIL...................................... 37

F. USER MANUAL... 38

1. Start Up... 38

2. Run Time Options..................................... 39

V. CONCLUSIONS... 41

A. THE ADA LANGUAGE...................................... 41

1. Object Oriented Programming (OOP)......................... 41

2. Strong Typing .. 41

3. Information Hiding....................................... 42

4. Concurrency... 42

5. Portability... 42

6. Hard Real Time Systems................................. 44

7. Final Comment... 44

B. SPECIFICATION AND PROTOTYPING.......................... 44

C. THE COMBINATION OF PSDL AND SPEC...................... 46

APPENDIX A. INS SPECIFICATION IN PROTOTYPE DESCRIPTION LANGUAGE

(PSDL).. 47

APPENDIX B. ADA SOURCE CODE LISTING........................ 58

LIST OF REFERENCES.. 81

INITIAL DISTRIBUTION LIST...................................... 83

V

LIST OF FIGURES

Figure 1: Software Development Process 3

Figure 2: Screendump from Graphic Editor - Operator INS 7

Figure 3: Decomposition of Operator INS 10

Figure 4: Internal Representation of Operator DISPLAYHANDLER 12

Figure 5: External Systems and Interfaces 21

vi

THESIS DISCLAIMER

- Ada is a registered trademark of the United States Government Ada Joint Program
Office.

- INTEGRADA is a trademark of AETECH, Inc.

- Meridian AdaVantage is a trademark of Meridian Software Systems, Inc.

- Sun Workstation is a registered trademark of Sun Microsystems Inc.

The source code developed in this thesis is in not meant for operational use, but

for an academic purpose, therefore anybody who is going to use the code or part of it

shall be advised to checL' the correctness for the particular application. The author does

not accept any responsibility beyond the academic environment.

vii

ACKNOWLEDGEMENT

... to my wife Gudrun and my sons Andreas and

Daniel for reminding me sometimes, that there is a

world besides computers.

viii

I. INTRODUCTION

A. THE SOFTWARE CRISIS

What is the software crisis? To explain this a look at the development of computers

will be helpful. The early machines had very little memory caparity, therefore the

programs which could run on these machines had to be restricted in their need for

memory as well (the technique of overlays had not evolved then). Since programs were

small it was very easy for a single person to comprehend a program in its entirety. In

those days programming was more of an art than a science. The major portion of the

cost of a computer system was associated with hardware. Computers have come a

long way since then. Memory capacity has increased to a level that was considered

impossible only a few years ago. Presently hardware technology advances at a speed

of improving the memory capacity and speed by a factor of two about every two years.

Unfortunately the software side of computer systems has not been able to keep up

with hardware development. More and more problems are considered to be suitable

for automation and computer application, the problem domain expanded. Soon no one

person was able to comprehend a software system as a single person. but the

techniques used were the same as in the beginning. This led to the software crisis,

the symptoms are described by Booch [Ref. 1:p. 8] as:

" Responsiveness. Computer-based systems often do not meet user needs.

* Reliability. Software often fails.

" Cost. Software costs are seldom predictable and are often perceived as excessive.

" Modifiability. Software maintenance is complex, costly, and error prone.

" Timeliness. Software is often late and frequently delivered with less-than-promised
capability.

1

• Transpoiiaility. Software from one system is seldom used in an other, even when
simial, unctions are required.

. Efficiency. Software development efforts do not make optimal use of the resources
involved (processing time and memory space).

Having stated the symptoms of the crisis, the next question must be about the

causes, which are summarized by Devlin [Ref. 2:p. 2] as:

" Failure of organizations to understand the life-cycle implications of software
development.

• A shortage of personnel trained in software engineering.

" The von Neumann architectures of most of our machines discourage the use of
modern programming practices.

* The tendency of organizations to become entrenched in the use of archaic

programming languages and practices.

This research explores two efforts which have been undertaken over the last years

to solve the above stated problems. The following two sections will give a brief

overview.

B. RAPID PROTOTYPING

One effort to increase software development productivity is rapid software

prototyping. It is especially worthwhile in the development of hard real time systems.

In traditional Software production, a system has to be fully implemented to confirm that

the final product meets the requirements. The idea behind rapid prototyping is to create

a prototype of the proposed system to verify that the real time behavior demanded by

the customer is feasible under the imposed constraints. This can save tremendous

amounts of resources in terms of money and work, because the feasibility of the

system is verified before the actual design and implementation of the system is

undertaken. Design errors are magnitudes cheaper to correct at this level compared to

redesigning and recoding of a finished product which doesn't meet the customer

requirements,

2

One such system for rapid prototyping. called CAPS (Computer Aided Prototyping

System) which is based on PSDL (Prototype System Description Language) is presently

under development in a research project at NPS. Background information on the CAPS

and a more in depth reference to PSDL can be found in [Ref. 3, 4, 5, 6, 7, 8]. In this

thesis features of PSDL and CAPS concepts will be explained only the extend that is

necessary for understanding and these explanations will be given as the need arises.

C. FORMAL SOFTWARE ENGINEERING

Another approach, which consideres the complete software lifecycle anmd not just

the prototyping aspect of software development was developed by Berzins and is

descnbed in [Ref. 9]. The following is a short extract to summarize the key concepts

of his approach.

DEFINITION:

Software Engineering is the application of science and mathematics to the problem
of making computers useful to people by means of software.[Ref. 9:p. 1-1]

Software development can be viewed as a five stage process. The concept and

the relations between the different stages can be seen in [Figure 1:p. 3]

lequirements Analqsis/I T 1
flunct iona l Specirication

L 'T voltion
Architectural esig

ILT
Implementat ion

Figure 1: Software Development Process

3

The downarrows show the normal flow of execution, the uparrows represent details

gained at a later stage, which require the repetition of an earlier step. The long arrow

labeled " Evolution" demonstrates that every software product Is subject to change due

to altered operating conditions or user needs.

Each of these five steps is associated with certain goals, which are described in

[Ref 9:p. 12] as:

" REQUIREMENTS ANALYSIS: Is the process of determining and documenting
the user needs and constraints.

" FUNCTIONAL SPECIFICATION: Is the process of proposing and formalizing a
proposed system interface for meeting the
customer needs.

" ARCHITECTURAL DESIGN: Is the process of decomposing the system into
modules and defining internal interfaces.

" IMPLEMENTATION: Is the process of producing a program for each
module.

* EVOLUTION: I-" the process of adapting the system to the
changing needs of the customer.

4

I1. THE PROTOTYPE APPROACH

A. ABOUT CAPS

CAPS can be characterized as a composition of separate tools which provide the

means to create a prototype of a software system in a fraction of the time the actual

development would take. It is not meant to replace a good software development

environment, but to aid it and make it even better. The prototyping system as mentioned

in Chapter I, has not yet been completely implemented; therefore a summary of the

capabilities of the completed system will be given. A description of the currently

cperational parts that were used for this thesis as well as the development state of the

other parts will follow. The system incorporates these tools:

" User Interface

" Graphic Editor

" Syntax Directed Editor

* Language Translator

" Debugger

" Static Scheduler

" Dynamic Scheduler

" Software Base Management System

* Design Database

The user interface ties all the tools together. It takes care of the proper filename

conventions and file formats to be passed between the tools. For the development of

a new prototype, the designer would start with the graphic editor tool.

5

The graphic editor supports a graphical representation of the dataflow model

underlying the PSDL language. Building blocks of the graphic language are nodes and

arcs. Nodes represent functions or state machines, collectively called operators. Arcs

represent dataflows among others, external inputs or outputs.

Once in the graphic editor, the mouse becomes the primary Input device for control

over the editor, whereas text input is entered via the keyboard into designated windows.

The following operations are available to the user:

• for file management:

• LOAD EXISTING - to retrieve a previously created file for modification.

• STORE - to store the current graphical representation of a prototype.

" QUIT - to return to the user interface.

" for editing:

• DRAW OPERATOR - to draw an operator. Each operator must have a unique
identifier and a time constraint which is the maximum
execution time associated with the operator.

• DRAW DATA FLOW- to draw a data flow between two operators, it also must
have a unique identifier and, since the direction of a data
flow is important, it must be taken care of during the
drawing process. The data flow has to start at its originating
operator and end at its destination operator.

• DRAW SELF LOOP - to draw a self loop, which is the graphic representation of
a state variable, a PSDL construct necessary to describe
a state machine.

* DRAW INPUT - to draw an external input into the system. This is also a
data flow with the difference that it doesn't flow from one
operator to another, but from an external source e.g. user,
other software or hardware system.

- DRAW OUTPUT - to draw an external output, similar to drawing an input.

except for the direction.

A system screen dump taken during the creation of operator INS is shown in

[Figure 2:p. 7]. After leaving the graphic editor certain files are created, whose contents

will be described during the actual development process later on.

6

i
l l

I S
"

t -
I

Ill

* w*PTV I 'SI Yl ,.r' , P t* .

3
P.-

O -I .-.

4W?

Figure 2: Screendump from Graphic Editor - Operator INS

Output from the graphic editor in textual form is feed into the syntax directed editor,

whose main purpose is to guarantee the completion of a syntactically correct PSDL

program. It assists the user in adding information into the prototype which is not easily

representable in graphic form e.g. periodical behavior of an operator, type

declarations for data flows of all three kinds and triggering conditions. The importance

of syntactically correct PSDL programs becomes obvious In the employment of the next

tool, the language translator, which relies on this property to translate a PSDL program

into executable Ada code.

The static scheduler takes the output from the language translator and creates a

time schedule for the execution of all time-critical operators and organizes It so that all

timing constraints will be met during execution if possible. All non time-critical operators

7

are handled by the dynamic scheduler. It checks the static schedule for any unused

time slots and schedules non time-critical operators for execution during

those times. The execution of non time-critical operators may be suspended before

completion, when the static scheduler needs the resources for a time-critical operator.

Whenever there is a conflict during the creation of the schedules or the execution

of the prototype, the debugger is invoked, to give the user a chance to solve the conflict

dynamically on line, instead of breaking off execution and thereby forcing the repetition

of the whole scheduling process from the beginning.

Two databases complete the system. The software base contains reusable M-da

components, which are searched for using the PSDL specification of an operator, the

design data base keeps track of the prototype currently under construction, it maintains

this information by storing PSDL specifications.

The user interface and graphic editor are completely implemented and were used

for this thesis. The language translator is implemented as well, but does not yet include

all the constructs used in this project such as composite data types, therefore it was not

used. For all the other components designs exist, some are partially implemented, but

not operational.

B. THE INS PROTOTYPE DEVELOPMENT IN PSDL

The first tool to be used in the prototype development is the graphic editor. It is

implemented on a SUN workstation and makes extensive use of its windowing and

graphics capabilities. The editor is invoked from the main menu of the user interface

with option "construct" [Ref. 3]. This in turn invokes the 'GE' script. At the top level

design of INS only one operator exists with all inputs and outputs intended for the

complete system. No timing constraints were placed on operator INS. The Inputs and

outputs are data streams of type data flow. Streams behave like FIFO queues (first-in-

8

first-out) with a fixed length of one element. thereby implying, that a new value can only

be added to the queue, after the old value has been read. For further explanations see

[Ref. 6:p. 9]. After all the entities have been entered into the graphic editor, the picture

is saved in the file SYS.G. The GE script partially produces the syntactically correct

PSDL specification for operator INS, where only the data types for the Input and output

data have to be specified, which would normally be done In the syntax directed editor.

Since it is not operational at this time, the editing has to be done manually in a

standard word processor.

The following represents the specification, which is partially created by GE and

completed manually by adding the datatypes:

OPERATOR INS

SPECIFICATION

INPUT PresentPosition POSITION;
Course : FLOAT;
Speed INTEGER;
WPI POSITION;
WP_2 POSITION;
WP_3 : POSITION;
WP number "INTEGER;
New-time : TIME;
Newchoice "INTEGER;

OUTPUT PresentPosition : POSITION;
Course FLOAT;
Speed INTEGER;
WP_1 "POSITION;
WP_2 POSITION;
WP_3 POSITION;
WP number INTEGER;
Bearing • FLOAT;
Distance : FLOAT;

END

Since the design database does not contain an implementation for operator INS, it

needs to be decomposed. The graphic representation is provided in [Figure 3:p. 10].

New constructs used in the decomposition are state variables, which are represented

9

U)- Cho I"

ProventyPooill-n

Crsepio o

most recenttdata value.

SP*

Fiur 3:o Decompoesito ofe Oprator INSoi o h is ie edoeainde

ast seftloop anod data stramsueweenswt operatwibutrunlike the stras wIthn

ot ot opracetoor Irthear samplednata steams which:p manhs thatmthe dpeatore

bfred Ami nw vale nb wurtten teompten buomer regardless were the old vaue

asee n re orsint dtbe bufr can be rea s oftemseeed, nawy. rvdn h

101

most reent dat value

arFaic and epodto nof urteraompstin AtmcoertrNretoewhcSr

aslred inop the dsgataamsetrcn bepeatsil implete idaasrasIt.n

CHfeCKEYBAR A e au as beitnm sugstohek the kufrreadeyoar fothr aneinterrupt.

hich ien trna dirct The floweo cno forte lsoe lees ofethed slys dpenvding one

most ecentdata al10

user input. If no new interrupt is sensed, the control is directed according to the last

interrupt. This scheme turns the system in its entirety into a state machine. Control of

the lower levels is executed via the data streams OLDCHOICE or NEWCHOICE.

COMPUTEPOSITION is an independent process which updates the present position

of the aircraft using the velocity values received by the system, the last valid present

position, called OLDPOSITION, or a new position entered by the user. It produces a

new present position, called MOSTRECENTPOSITION. The reason for using three

different names for the same entity, a present position, lies In the naming conventions

used in the graphic editor and PSDL itself. If the same name is.used for several data

streams (overloading) the system treats all those streams as being the same which is

not really the case.

COMPUTEBEARINGDISTANCE is another independent process woriing on the

MOSTRECENTPOSITION, a WPNUMBER which represents a user choice and the

respective waypoint data contained in WP_1, WP_2 or WP_3 respectively. The outputs

BEARING and DISTANCE are stored in their appropriate buffers.

Operator DISPLAYHANDLER is composite. [Figure 3:p 11] gives the graphic

representation. All operators at this level are atomic; they comprise input and output for

the system. The left column contains the operators responsible for input. In the middle

column the data buffers are grouped together. Inputs to these buffers are all of type

sampled data stream. Operators for system output are in the right column.

A word of explanation about the data buffers used is In order here. The fact that

the above mentioned data streams are considered to be sampled data stream implies

that they are inherently buffered, therefore no buffers as depicted in [Figure 3:p. 101

need to be explicitly mentioned, however they are Included here for a better

understanding of the system layout. In the strict sense of PSDL the middle row in the

11

figure could be eliminated without changing the meaning or behavior of the overall

system.

*~-211 R ~ ~ ~ fecent 10911 1 on

*mwin t UVpro-tn Pt~f

bufe arr-IA .

In lion.v~,t DisplayypIel

/ as

Fiue :nena epeenin ofuOpero DIPAADE

Inp adtotocetnthPSLseiiainteflPDLLNSicrated

contents for the, deom oso olt OPRAORIN s shwI eo n ntenx
page.

12ra

OPERATOR INS:

Old-choi ce. Check keyboard ->Check keyboard
Old -choice. Check-keyboard ->Displayhandier

New-choice.Check-keyboard ->Display-handier

Bearing .Compute -bearing-distance ->Displayjiandler

Distance. Compute_bearIng~di stance ->Display handler
Speed. Display_handler *>EXTERNAL

Speed. Display_handler ->Computeposltion

Course. Display_handler ->EXTERNAL

Course. Display_handler ->Compteposftion

OldPosition.Displayhandler -- > Comnpute-posiion
Bearing. Display_handler ->EXTERNAL

Distance. Display_handler ->EXTERNAL

WP_I .Display -handler ->EXTERNAL

WP_2.Display handler ->EXTERNAL

WP_-3.Display handler ->EXTERNAL

WP -number. Display handler -- > Compute -bearing distance
WP_-3.Display handler ->Compute bearing distance
WP_2.Display handier ->Compute-beaingj dstance
WP_1 .Display handler ->Compute beari ng di stance
WP-number.Display handler --> EXTERNAL
Most-recentjposition.Display handler -- > EXTERNAL
New-choice. EXTERNAL -- > Check -keyboard
Old-time.Computeposition -- > Compute-position
Most-recentposition.Computeposition ->Display-handier

Most-recentposition-.Computeposition ->Computebeani ngdi stance
WP-number. EXTERNAL -- > Display_handler
New-time. EXTERNAL -- > Compute..position
WP_1 .EXTERNAL ->Display-handier

WP_2.EXTERNAL ->Display handler
WP_3.EXTERNAL ->Displayhandler

PresentPosition. EXTERNAL -- > Display-handler
Course.EXTERNAL ->Display handler
Speed. EXTER NAL ->Display handler

DATA STREAM

Bearing :FLOAT;
Distance FLOAT;
Speed :INTEGER;
Course :FLOAT;
WP -number INTEGER;
WP_-3 POSITION;
WP_-2 :POSITION;
WP_-1 :POSITION;
Old_-Position :POSITION;
Old -choice INTEGER;
New -choice :INTEGER;
Most-recentjposition: POSITION;

13

The three lines

[1] Oldschoice.Checkkeyboard --> Check-keyboard
[2] Course.Display_handler --> Computeposition
[3] PresentPosition.EXTERNAL --> Displayhandler

are typical for the possible data streams. [1] represents a state variable and can be

read as: there is a data stream called Oldchoice originating at operator

Check-keyboard and also ending at that operator. [2] is a standard data stream

between two operators. [3] shows an external input to the system, a similar format is

used for outputs.

The last items needed to completely specify operator INS, are potential control

constraints for its subcomponents, which have been defined as:

CONTROL CONSTRAINTS

OPERATOR DISPLAYHANDLER
PERIOD 1 s

OPERATOR COMPUTEBEARINGDISTANCE
PERIOD is

OPERATOR COMPUTEPOSITION
PERIOD is

These constraints do not appear in graphic representation, since it only shows

maximum execution times. For clarification of an operator the design language includes

a description construct.

DESCRIPTION

{This is the root operator. It is composite and consists of the composite operator
DISPLAYHANDLER and the atomic operators CHECKKEYBOARD.
COMPUTEBEARINGDISTANCE and COMPUTEPOSITION)

END

Since the rest of the development is a repetition of the steps described so far, that

work is not presented here. A complete PSDL specification for the system can be found

in Appendix E. Operator COMPUTEPOSITION is used on the next page to clarity a

certain aspect which might confuse the reader.

14

OPERATOR COMPUTEPOSITION

SPECIFICATION

INPUT Speed INTEGER;
Course FLOAT;
Old Position : POSITION;
Newtime : TIME;

OUTPUT Mostrecent.position: POSITION;

STATE Old-time TIME;

END

Part of a complete PSDL implementation of an operator is the TRIGGER

CONDITION, which can take on the values BY ALL or BY SOME [Ref. 6:p. 26]. The

fact that no TRIGGER CONDITION is used indicates that the default value TRIGGERED

BY ALL is used. In the case of operator COMPUTEPOSITION all four inputs SPEED,

COURSE. OLDPOSITION and NEWTIME have to be present to fire the operator.

15

Ill. THE FORMAL SOFTWARE ENGINEERING APPROACH

A. PREFACE

The system development will follow the steps as outlined in [Ref. 9] which was

summarized in the introduction (see p. 4]. It is assumed, that the reader has familiarized

himself with the sequence and purpose of each step. This is a case study aimed at

exploring methods for software development and not at creating a system of production

quality for operational use, therefore certain aspects of the system such as the concept

of 'wind' will be left out of consideration.

B. THE INITIAL PROBLEM STATEMENT

The proposed software system Is an Inertial Navigation System (INS) to be
used In aircraft. It Interacts with the flight directory system. The system must
be capable of deriving the present position of the aircraft and provide
Information about the flight parameters as well as destination data for selected
destinations. Additional data needed for aircraft steering must be available.

C. REQUIREMENTS ANALYSIS

1. The System's Environment Model

To create a vocabulary to which all persons involved in the development process

can refer and agree a model of the system's environment is built. For this example it

is the following:

" The INS will be a software system.

" It will interact with the flight directory system (FDS), the user and the velocity unit
(VU).

" The FDS is a device used to steer the aircraft in an automatic mode.

" The VU is the part of the overall system where the aircraft acceleration in all three
dimensions is measured and converted into velocities.

* Automatic mode describes the fact that the aircraft is steered by the computer and
not by the pilot.

16

" The present position is the aircraft's position relative to the earth's surface, it is
e.,pressed in terms of latitude and longitude.

" Flight parameters are measures of the aircraft's behavior with respect to movement
in space consisting of the components course, speed and altitude.

" A destination is a point in space expressed in the same terms as present position.

" Destination data are measures of the relative position of the aircraft to the
destination.

" Data for steering the aircraft are those that are needed by the flight directory system
to steer the aircraft to the selected destination.

2. Goals and Functions of the System

To derive the high level goals the initial problem statement is used. For the

proposed system they are:

GI: The purpose of the INS is to help the aircrew to navigate their aircraft.

G1.1: The system must provide information about the state of the aircraft.

G1.2: The system must calculate destination data for destination positions.

G1.3: The system must provide data necessary to steer the aircraft.

G1.4: The system is supposed to be highly concurrent and prepared for future
extensions.

3. Constraints

With the development of every system certain constraints like a fixed budget or

delivery dates are associated; which are usually implied by the customer, For our

example they are aimed at making this project feasible and suitable for the academic

environment.

17

Implementation Constraints

Cl: The system has to be implemented in Ada

C2: The implementation should aim at a high level of concurrency.

C3: The compilers available are

" VERDIX on a SUN workstation

" Meridian AdaVantage on a IBM XT compatible PC

" INTEGRADA on a IBM XT compatible PC

Performance Constraints

C4:The positional data and destination data have to be updated. every second.

C5:The system must allow for future extensions.

Resource Constraints

C6:The system must be developed within three month by one person.

4. Refined Goals

Continuing in the development process, the high level goals derived earlier,

have to be refined. This is done by identifying the concepts in the high level goals

which need to be explained further. The goals are repeated here for easier reference.

G1.1: The system must provide Information about the state of the aircraft.

The concept of 'state of the aircraft' needs to be refined; it consists of information

about the aircraft's position and its flight parameters. These concepts have been

explained in the environment model; therefore the refined goals for G1.1 are:

G1.1.1: The system must provide the aircraft present position.

G1.1.2: The system must provide the aircraft course.

G1.1.3: The system must provide the aircraft speed.

G1.1.4: The system must provide the aircraft altitude.

18

Another level of refinement is needed to define the units of the above Introduced

entities and their meanings.

G1.1.1.1: The position consists of latitude and longitude, both measured in degrees(*),

Minutes(') and Seconds("). Latitude can take on values from 900 south to 900

north. The range for longitude extends from 1800 west to 1800 east.

G1.1 2.1: Course is measured in degreesC), oriented to true north which equals a

course of 0'.

G1.1.3.1: Speed is measured in knots(KTS) and can range from 0 to 499KTS.

G1.1.4.1: Altitude is measured in feet(ft) and ranges from 0 to 50000ft.

G1.2: The system must calculate destination data for destination positions

'Destination data' as mentioned in the environment model determine the relative

position of the aircraft to a destination position. This relation is expressed in terms of

true bearing and distance.

G 1.2.1: The system must calculate the true bearing from the aircraft to a destination

position.

G 1.2.2: The system must calculate the distance from the aircraft to a destination

position.

G1.3: The system must provide data necessary to steer the aircraft.

In G1.3 the concept of 'data necessary to steer the aircraft' needs refinement.

The environment model mentions that the aircraft can be flown in automatic mode.

Consequently the steering data must be those needed to employ that automatic mode.

In order for the aircraft to fly to a destination position it needs a direction to fly in, which

e.g. can be provided as a bearing relative to the present course. This relative bearing

19

is the difference between the present aircraft course and the true bearing of the aircraft

to the destination position. Refinement of G1.3 results in:

G1.3.1: The system must provide true bearing to a destination position.

G1 .3.2: The system must provide relative bearing to a destination position.

After defining all these goals the question arises how they can be met; where

does all the information to satisfy the goals come from? In this case all the necessary

data will be computed inside the INS and the data these computations will be based

on will enter the system via its interfaces to the user and the velocity unit, which will

be defined in the functional specification.

G1.4: The system Is supposed to be highly concurrent and prepared for future

extensions.

The goals in G1.4 cannot be refined here, they will be considered in the

architectural design stage and in the implementation.

D. FUNCTIONAL SPECIFICATION

Berzins provides procedures and guidelines for the conduct of a functional

specification in [Ref.9:p. 3-16]. Each step Is quoted here to enable the reader to follow

the development process more easily.

STEP 1

"Identity the major subsystems of the proposed software and the user classes and
external systems with which the proposed software system will interact."

Using the environment model created earlier, the following entities are Identified:

" There will be one INERTIALNAVIGATIONSYSTEM software system.

" The system will interact with three external systems, USER,
FLIGHT_DIRECTORY_SYSTEM and VELOCITYUNIT, the latter two being hardware
devices.

No subsystems are identified at this time.

20

STEP 2

"Identify all external interfaces of the proposed subsystems, and make a list of the
messages in each interface. Make sure the Identified messages correspond to the
goal hierarchy, and go over the lists with the customer. Create a SPEC module for
each external system, subsystem and interface. Set up the Inheritance links between
the interfaces and the proposed subsystems."

There are three external systems, one interface for each one Is needed. They

are named as: userinterface, flight_directory systemjinterface and

velocityunitInterface. The definitions given so far are summarized in [Figure 5:p. 21]

to insure the proper understanding of the general layout of the proposed system before

continuation.

USER I FDS

USIER INTERFACE INTERFACE - FDS

VU INTERFACE

Figure 5: External Systems and Interfaces

To avoid repetition of writing and reading, the lists of messages pertaining to

each interface are incorporated into the corresponding SPEC constructs right away. A

'? in a specification marks an entity that is non trivial and needs further refinement in

a later stage of the specification process. The resulting specification are shown on the

next page:

21

MACHINE inertial_navigationsystem
INHERIT userinterface
INHERIT flight directory-systeminterface
INHERIT velocity_unitinterface

STATE
INVARIANT true
INITIALLY true

END

MACHINE flight directorysystem
STATE ?
INVARIANT true
INi,'IALLY true

-- The flight directorysystem is a hardware system, therefore it.will not be considered
-- any further in the development process.

END

MACHINE velocityunit
STATE ?
INVARIANT true
INITIALLY true

-- The velocity-unit is a hardware system, therefore it will not be considered any
-- further in the development process.

END

MACHINE user
STATE ?
INVARIANT true
INITIALLY true

END

MACHINE userinterface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE newposition
-- Enables the user to enter the coordinates for a new present position into the
-- system.

MESSAGE definewaypoint
-- Enables the user to enter the coordinates for a destination waypoint into the
-- system.

22

MESSAGE select waypoint
-- Enables the user to select one of the waypoints as a destination for computing
-- destination data from there on.

MESSAGE display select
-- Enables the user to select a data item for display on the screen.

END

MACHINE flight directorysystem interface
STATE?
INVARIANT true
INITIALLY true

MESSAGE relative bearing_to aWP
-- Requests a relative bearing inertial-navigation system to a selected waypoint for
-- steering the aircraft.

END

MACHINE velocity_unitinterface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE newvelocities
-- Provides new velocity data to MACHINE ins.

END

Since this is an example aiming at exploring the principles of software

engineering and not actually develop a complete system, the further development and

refinement will not be done for all components but only for those, which give good

examples for what is supposed to be done in each step or are suitable to introduce new

concepts. For step three the MACHINE userinterface has been chosen.

STEP 3

"For each interface, write down a skeleton specification for all of the messages.
Choose names for all messages, exceptions and message components, and identify
the data type of each message component. Identify any new abstract data types
needed, and create SPEC modules for them. When all of the components have
been identified, make an initial estimate of how much effort it will take to build the
system."

Step three yields the following result for MACHINE userinterface, where the

comments relate to the corresponding goal, developed in the requirements analysis:

23

MACHINE userinterface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE new_.position (p: position) --G1.1.1
TRANSITION ?

MESSAGE definewaypoint (waypoint: position, wpnumber: waypointnumber range)
-- GI.2
WHEN ?

TRANSITION ?
OTHERWISE REPLY invalid-waypointnumber

MESSAGE selectwaypoint (wpnumber: integer) --G1.2
TRANSITION ?

MESSAGE displayselect (displayselection: displayoption) --G1.1, G1.2
TRANSITION ?

TEMPORAL update-display WHERE PERIOD ?
SEND ?

END

A TEMPORAL clause has been introduced here to represent the time dependant

behavior of the interface. It will be elaborated later on.

No abstract data types are identified at this time, since no other operations than

input and output are performed on either of the data types position, real and integer.

STEP 4

"Invent conceptual models for each machine and type. Develop the invariants and
initial conditions, and define the concepts needed to specify them. Check the
consistency of the interfaces, and make any adjustments needed."

Before the INVARIANT and INITIALLY conditions can be discussed, it is

necessary to elaborate the STATE of the interface. It is to contain the following entities:

" Present position

" Course

* Speed

" Altitude

24

° Waypoints 1 to 3 (From here on the system Is supposed to be able to
handle up to three waypoints)

* Cu rrent waypoi nt_number

" Display_selection

Since the components in the STATE can take on only defined values, e.g.

displayselection can take on only those values enumerated in type displayoption, and

there are no unallowed interactions between the components in the state, INVARIANT

is true for all possible STATES.

Al! components in STATE are initialized before the user takes control over the

program. The refined specification for MACHINE userinterface:.

MACHINE userinterface
STATE (present__position • position,

course • bearingrange,
speed • speed_range,
altitude • altitude_range,
waypoint_1 • position,
waypoint_2 position,
waypoint_3 : position,
current wpnumber • waypoint number range,
displayselection "displayoption

INVARIANT true

INITIALLY presentposition [latitude::0.0,longitude::0.0],
course = 0.0,
speed = 0,
altitude = 0,
waypoint_1 = [latitude::0.0,longitude::0.0],
waypoint_2 [latitude::O.0,longitude::0.0],
waypoint_3 = [latitude ::0.0,longitude::0.0],
currentwpnumber = 1,
display_selection = present_position_choice

MESSAGE newposition (p: position)
TRANSITION ? -- update coordinates for presentposition

MESSAGE definewaypoint (waypoint: position, wp-number: waypoint number-range)
WHEN ? -- distinguish between waypoints

TRANSITION ? -- update coordinates for a waypoint
OTHERWISE REPLY EXCEPTION invalidwaypoint number

MESSAr-E selectwaypoint (wp number: integer)
TRANSITION ? -- update the waypoint selection

25

MESSAGE displayselect (displayselection: displayoption)
TRANSITION ? -- update display choice

TEMPORAL update-display WHERE PERIOD ?
SEND ?

CONCEPT position: type
WHERE ?

CONCEPT bearing-range: type
WHERE ?

CONCEPT speedrange: type
WHERE ?

CONCEPT altitude-range: type
WHERE ?

CONCEPT waypointnumber.range: type
WHERE ?

CONCEPT distancerange: type
WHERE ?

CONCEPT display-option: type
WHERE ?

END

STEP 5

"Develop the WHEN, WHERE and TRANSACTION clauses for each message and
identify the concepts needed to specify them. Refine the invariants as needed.
Determine IMPORT, EXPORT relations for shared concepts and create definition
skeletons for each concept. The definition skeletons should define the types of
inputs and outputs for each concept, and should have an informal description of the
concept."

STEP 6

"Write formal definitions for concepts, identifying any necessary lower level concepts,
and writing definition skeletons for them. Continue until all concepts have been
defined in terms of built-in or available components. Check the internal consistency
of the entire specification, and resolve any conflicts."

Steps five and six are combined. All the WHERE and WHEN clauses that were

marked by a '? in the previous step are elaborated here. The result Is shown on the

next page.

26

MESSAGE new-position (p: position)
TRANSITION present-position = p

MESSAGE define waypoint (waypoint: position, wp-number: waypoint-number range)
WHEN currentwpnumber = 1

TRANSITION waypoint9l = waypoint
WHEN current_wpnumber = 2

TRANSITION waypoint2 = waypoint
WHEN currentwpnumber = 3

TRANSITION waypoinL3 = waypolnt
OTHERWISE -- no other choice possible due to type restriction for wp number

MESSAGE select-waypoint (wpnumber: Integer)
TRANSITION current wpnumber = wpnumber

MESSAGE displayselect (displayselection: displayoption)
TRANSITION *display-selection = displayselection

TEMPORAL update-display WHERE PERIOD = (1 second)
WHEN display-selection = presentpositionchoice

SEND display(p: position) TO user
WHERE p = presentposition

WHEN display-election = coursechoice
SEND display(c:bearing) TO user

WHERE c = course
WHEN display-selection = speed choice

SEND display(s:integer) TO user
WHERE s = speed

WHEN display selection = altitude choice
SEND display(a:altituderange) TO user

WHERE a = altitude
WHEN display-selection = waypointchoice

SEND (w: position) TO user
WHERE IF currentwaypoint number = 1 THEN w = waypoint_1

ELSE IF current waypoint_number = 2 THEN w = waypoint_2
ELSE w = waypoint_3
Fl

WHEN display-selection = truebearing to a-wp choice
SEND (t: bearingrange) TO user

WHERE t = truebearing(presentposition, waypolnt:: position)

WHEN display-selection = distanceto,_awp_choice
SEND (d: distancerange) TO user

WHERE d = distance(present position, waypoint:: position)
OTHERWISE -- no other choice possible due to type restriction for

-- displayselection

CONCEPT position: type
WHERE position = TUPLE{latitude:: lat range, longitude:: Ionrange)
-- The meaning of type position is explained In G1.1.1.1.

27

CONCEPT bearingrange: type
WHERE subtype(bearing_range, real) & ALL(b: bearing_range:: 0.0<=b<360.0)
- A compass rose has values from 0.0 to 360.0 degrees

CONCEPT speed-range: type
WHERE subtype(speedrange, integer) & ALL(s:speedrange:: 0<=s<500)
-- Maximum speed allowed is 500 kts

CONCEPT altitudejange: type
WHERE subtype(altitude range, integer) & ALL(a:altitudejrange:: 0<=a<=50000)
-- Maximum altitude allowed is 50000 feet

CONCEPT waypoint-number-range: type
WHERE subtype(waypointnumberrange, integer) &

ALL(w:waypoint-number range:: 1 <=w<=3)
-- Only three waypoints are allowed

CONCEPT distance range: type
WHERE subtype(distance_range, real) & ALL(d:distancerange:: 0.0<=d<=10800.0)
-- 10800 is the maximum number of nautical miles between two points on the
-- earth's surface it is equal to half its circumference.

CONCEPT display-option: type
WHERE displayoption = enumeration { present_position_choice,

coursechoice,
speedchoice,
altitude choice,
waypoint choice,
true beaningto_a_wpchoice,
distance to-a-wpchoice)

-- The displayoption is a way for the user to control, which data item is displayed
-- on the screen.

CONCEPT distance(presentposition waypoint: position)
VALUE (d: distance range)
-- uses a formula from spherical geometry to calculate the distance between two
-- points on earth's surface and expresses it in terms of distancerange

CONCEPT bearing(presentpositon waypoint: position)
VALUE (b: bearingrange)

uses a formula from spherical geometry to calculate the bearing between two
points on earth's surface and expresses It in terms of bearingrange

CONCEPT latrange: type
WHERE subtype(lat range, real) & ALL(I: lat range:: -90.0<=1<=90.0)

CONCEPT Ionrange: type
WHERE subtype(lon_range, real) & ALL(I: Ion-range:: -180.0<=I<=180.0)

END

28

The above is the complete abstract functional specification for MACHINE

user-interface and marks the end of the mechanical development, since the remainder

would be a repetition of the used methods of refinement. As a first result of this work

it shall be mentioned here, that this kind of process is not suitable for a manual

approach. It will only be feasible for large software system after automated tools have

been developed, which aid the designer/analyst in the process, e.g. a syntax checker

is already available and was used to verify the syntactical correctness of the

specification; a typechecker and a syntax directed editor are currently under

development.

E. ARCHITECTURAL DESIGN

The architectural design for the INS system does not have to be developed

using the SPEC language. since this step was already accomplished in the PSDL

development, for a review see [Figure 2:p 7], [Figure 3:p 10] and [Figure 4:p. 12]. The

design is ready to be implemented at this stage.

29

IV. IMPLEMENTATION

A. PREFACE

Up to this point we have explored methods to create software in an automated

fashion. Since not all tools are operational yet, the implementation of the INS system

was done in the traditional 'manual' way. This approach is worthwhile because it gives

a good bases for future work. When all the tools become available, a test case will

already be available which can be used to compare automatically and manually

produced software. Even though the implementation was done manually, the author tried

to stay as close to the development work done so far as possible. Parts of the code

for the INS system are shown in this chapter, for the full implementation consult

Appendix B. Actual code is typed in bold face to visually separate it from the text.

B. COMPILER

The implementation was done using two compilers:

1. INTEGRADA

The system runs on an IBM XT personal computer and was used to develop

subcomponents to be integrated into the overall system at a later stage.

INTEGRADA is not only a compiler, but a development environment, providing

an editor which can be used as a normal programmer's editor or as a syntax or

language directed editor. This was considered useful, since the Ada language is very

rich in its available constructs, and the syntax generation capability saved a lot of time

in consulting the Ada language reference manual (ALRM) [Ref. 10] and other literature.

Another feature of INTEGRADA is the pretty printer which allows the user to

format the source code in several ways. The option 'Program Structure' is very helpful

30

for debugging purposes and the option 'MIL STD 1815 A' [Ref. 10] was used after all

the source code had reached its final stage to format the documents in a format as

described in the ALRM and that is accepted in the Ada community.

2. VERDIX

The target machine for the final product was a SUN workstation, the compiler

available on this system is the VERIDX Ada compiler Version 5.5 for the SUN 3. In

contrast to INTEGRADA this compiler Is a stand alone version, not an environment,

although some tools are provided with the system. To be mentioned are the source

level debugger which was very helpful in the implementation phase and the pretty

printer.

C. CONCURRENCY AND EXTENSIBILITY

During the formal requirements analysis the goal G1.4 was derived (see also p. 17)

G1.4: The system Is supposed to be highly concurrent and prepared for future

extensions.

This goal was realized in part during the decomposition of the prototype approach

by dividing the system into four separate processes, which can be executed

concurrently (see also Figure 3:p. 10). In the implementation these processes are

implemented as four independent tasks, whose skeletons are shown on the next page.

31

procedure INS is

task CHECKKEYBOARD is

end CHECK KEYBOARD;

task COMPUTEPOSITION is

end COMPUTEPOSITION;

task COMPUTE BEARING DISTANCE is

end COPUTEBEARINGDISTANCE;

task DISPLAL. ANDLER is

end DISPLAYHANDLER;
end ins;

This approach has the inherent problem of data integrity. Some of the tasks operate

on the same data elements and the question is, how to ensure that no two tasks try

to reference and update the same data element at the same time, a problem which is

new in multitasking environments, where a program is no longer a set of instructions

which are executed in sequence.

A solution was found in an algorithm presented in [Ref. 11]. It uses a task with two

entries, one entry allows data to be written to a buffer, the other one allows reading

from that buffer. Since the two 'accept' statements are Incorporated in a select

statement, only one of them can be executed at a time, thereby ensuring data integrity.

This data buffer was implemented as a generic package containing a task type. Since

the package is generic, it can be instantiated for different data types, the task type

allows the creation of several instances of the same type. The accessibility of the data

also provides for future extensions to the system. The actual source code used In the

INS system Is shown on the next page.

32

generic

type ITEM TYPE is private;

package DATASTORAGE is

task type BUTTER is
entry STORE(ITEM in ITEM TYPE);
entry RZCALL(ITKM out ITEMTYPE);

end BUTTER;
end DATASTORAGE;

package body DATASTORAGE is

task body BUFFER is
DATUM : ITEM TYPE;

begin
loop

select
accept STORE (ITEM in ITEM_TYPE) do
DATUM := ITEM;

end STORE;
or

accept RECALL (ITEM out ITEM TYPE) do
ITEM := DATUM;

end RECALL;
end select;

end loop;
end BUFFER;

end DATA-STORAGE;

To accommodate all buffers necessary for the INS system nine tasks which serve

as data buffers were instantiated.

A drawback of the multitasking concept was found during the development of the

input facilities. Due to the underlying operating system (UNIX) it was necessary to

serialize the two tasks CHECKKEYBOARD and DISPLAYHANDLER, which doesn't

affect the functionality of the overall system nor its efficiency or speed. However the

implementation is very sytem dependant for this part, which degrades portabibilty. Since

problems of this nature were not the main subject for this research they were not

investigated any further, which might have resulted in other solutions.

33

D. TIMING CONSTRAINTS

During the prototype development, time constraints were placed on some of the

operators. To show the principle of implementing such constraints, task

COMPUTEBEARINGANDDISTANCE is discussed.

task body COMPUTEBEARINGDISTANCE is

S

begin
S

loop
TASK START := CLOCK;

-- starts a stopwatch local to this task

-- statements to execute the necessary computations

TASK DONE := CLOCK;
-- stops the stopwatch

delay 1.0 - (TASKDONE - TASKSTART);

-- pauses the task

end loop;
end COMPUTE BEARING DISTANCE;

When the task enters the loop, a stopwatch local to this task is started. After all the

computations are executed and just before the end of the loop the stopwatch is

stopped. The task is then delayed for a period of one second minus the time it took to

execute the loop, thereby creating a repetition time or period of one second for the

loop. Should the difference be negative, which indicates that the loop needed more than

one second to executg, the task will not be delayed and the next loop execution will

start right away. According to the Ada standard, this does not necessarily mean the

next loop execution starts exactly one second after the last one, but that the task is put

in a 'ready' state, waiting for resources. When the necessary resources are available,

the task is put into the 'running' state and execution starts.

34

E. PACKAGING

The system was divided into a main program and four packages. Two of the four

packages are generic and were Instantiated in multiple Instances.

" procedure INS

" package NAVUTIL

• generic package FLOATINGPOINTUTILITIES

• package TERMINAL

" generic package DATASTORAGE

Packages NAVUTIL, FLOATINGPOINTUTILITIES and TERMINAL represent

collections of resources, package DATASTORAGE implements a buffer data type. In

addition to these user defined packages five additional packages supplied with the

compiler were used:

" package TEXT_10

* package MATH

" package CURSES

" package IOCTL

" package SYSTEM

1. Generic package DATASTORAGE

This package was already discussed in Chapter IV.C. Here an example of its use

is given. A navigation system needs the capability to store a geographical position,

consequently a buffer was instantiated for this purpose:

package POSITION_STORAGE is new DATASTORAGE (POSITION);

where POSITION is a user defined record data type. This makes a task type BUFFER

available for data type POSITION. Then a variable of that data type Is declared:

WPBUFFER : array (0 .. MAXWAYPOINTS) of POSITIONSTORAGE.BUFER;

35

The position is stored in one of the array elements. An example of Its usage Is the

task for computing the PRESENTPOSITION shon below.

task body COMIPUTE_POSITION is

begin

WP BUTFER(0) .RECALL (PRESENTPOSITION);
-- retrieves the old PRESENTPOSITION from its buffer

-- statements to do the calculation

wP BUFFER (0). STORE (PRESENT POSITION);
-- stores the new PRESENTPOSITION into its buffer

end COMPUTE-POSITION;

2. Package TERMINAL

Terminal is the only package that contains hardware dependant code, hence the

specification and the body were located in separate files. If the system is to be ported

to another system, which has different terminal capabilities, the body of package

TERMINAL is the only part that needs to be recoded and recompiled. The current

version contains options to run the system on a SUN workstation or a VT 100 terminal.

3. Generic package FLOATINGPOINTUTILITIES

The FLOATINGPOINTUTILITIES package contains some mathematical

functions not provided in the standard math library. Most of the algorithms were taken

from [Ref. 12]. The functions listed below.

functio- INTEGER PART
function REAL PART
function FLOOR
function CEILING
function ISPOSITIVE
function IS NEGATIVE
function INTTO CHAR
function CHAR TO INT

36

These functions were primarily used in conjunction with input/output operations,

which are all done in string or character format, to allow more control over the screen

layout. A sample screen is shown in the user manual in Section IV.F of this thesis.

4. Package NAVUTIL

All the functions used to perform the necessary computations In the INS system

are located in this package. It also includes the functions for input and output of

navigation specific data.

procedure GETPOSITION
procedure GETSPEED;
procedure GET COURSE;
procedure DISPLAYPOSITION
procedure BEARINGDISTANCE
procedure UPDATE POSITION

As an example for an input operation procedure GETCOURSE is shown here.

The input is supposed to be in the form DDD.D, where D is a digit from '0' to '9'.

procedure GET COURSE is

begin

-- read in the string

GET (COURSES) ;
-- check for period in the correct place
if COURSE S(4) = ' ' then
SUCC1: TRUE:

else
SUCC1 FALSE;

end if;
-- convert strinu to a variable of type FLOAT
COURSE F := FLOAT(CHAR TO INT(COURSE 8(1)) * 100 +
CHAR ITO INT(COURSE S(2)) * 10 + CHAITO_INT (COURSE_S(3))) +
rLOAT(CRARTO INT(COURSZ_S(5))) * 0.1;
-- check that value is in range
if COURSE F >= 0.0 and COURSE F < 359.9
then SUCC2 := SUCCl and TRUE;

else
SUCC2 :- FALSE:

end if;

end GETCOURSE;

37

The remaining input operations for the system are similar, and differ only in the

input string length and the checks to be passed, before an Input is accepted as valid.

These checks are embedded in loops, which can only be exited on a valid input.

F. USER MANUAL

1. Start Up

Only one file named 'INS' is necessary to run the system, it is invoked without

any parameters. The system interacts with the user only via the keyboard. Although

some error checking is implemented in the system, some errors are unrecoverable at

run time. In such cases program execution has to be aborted by pressing the

'CONTROL' key and the 'C' key at the same time. After an internal start up sequence

the user is presented with the screen shown below.

INS SIMULATOR

LATITUDE NOOOO.0 LONGITUDE WOOOO.0

ENTER ' UPDATE DISPLAY

[1] PRESENT POSITION [6) PRESENT POSITION

[2) WAYPOINT [7) WAYPOINT

(3) COURSE [8) COURSE / SPEED
[4) SPEED [9] BEARING / DISTANCE

The user may now enter a start position. The format for entering the Information

is always the same as presented on the screen, e.g. to enter the latitude:

- Enter 'N' for north or 'S' for south in upper or lower case letters.

38

- Enter four digits, two for degrees of latitude and two for minutes of latitude.

- Enter a decimal point.

- Enter one digit for decimal fractional minutes of latitude.

After the start position is entered, the user is prompted to enter course and

speed vaiueb, L;,en the program takes over .-ontrol and autciati.aIly selects option

number [6] (DISPLAY PRESENT POSITION). This marks the end of the start up

sequence. The system will continue to display the updated present position until the

user selects another choice from the menu, which is continuously displayed on the

screen.

2. Run Time Options

Generally an option stays in effect until another one is selected. The system

updates the screen once every second as long as it is in one of the DISPLAY options

[6] to (9]. In the ENTER / UPDATE options the user can take as much time as he

needs to complete an input. The following options are provided:

* ENTER / UPDATE

* [1] PRESENT POSITION To enter a present position into the system, behaves
as described in the start up section,

* [2] WAYPOINT To enter up to three waypoints, numbered 1 to 3.
After selection prompts for a waypoint number, then
the position can be entered. The default value for all
three waypoints is NOOOO.0 WOOOOO.O.

* [3] COURSE To enter a course, which is one of data elements
necessary for the system's computations. This is an
artificial option, which not be available on an
operational system, since COURSE and also SPEED
would be provided by other aircraft systems.

* [4] SPEED To enter a speed value ranging from 1 to 499 Kts.

* [5] STEER TO WAYPOINT To select one of the waypoints as the next
destination. Once a waypoint has been selected the
bearing and distance calculations refer to this
waypoint. The default value is 1.

39

• DISPLAY

* [6] PRESENT POSITION To display the present position of the aircraft.

* [71 WAYPOINT To display the coordinates of a waypoint, wv;ch has
been selected with option [5].

* (8] COURSE / SPEED To display the present values for course and speed.

* [9] BEARING / DISTANCE To display a true bearing and distance from the
aircraft's present position to a waypoint, which has
been selected with option [5].

40

V. CONCLUSIONS

A. THE ADA LANGUAGE

Ada as a programmint 'anguag9, is ono of the moc t powerful languages available

today, which has good, but also bad attributes associated with it.

1. Object Orlented Programming (OOP)

The constructs available in thb language give it characteristics of object oriented

programming language. Packages are an example for data abstraction and

encapsulation; they enable the programmer to create abstract data types in a true

fashion. If private types or even limited private types are used in the implementation,

the only operations available for an abstract data type are those defined by the

programmer, or in the case of private types additionally the 'assignment' and 'check for

equivalence' operation.

A major ingredient of OOP is inheritance. The 'with' statement in Ada allows a

a variable or object of a certain type to inherit characteristics, which e.g. might be

defined in a package.

2. Strong Typing

Another characteristic, strong typing, is a very important aspect in connection

with large software systems, which are, among others, one reason for Ada's existence.

Strong typing can make programming a very cumbersome task, since many type

conversions may be necessary. On the other hand It far outreaches this disadvantage,

when it comes to debugging a program as all programming errors that result In type

inconsistencies are detected at compile time already. For languages that support no or

almost no static type checking e.g. 'C' this checking must be done at run time. But then

the amount of typing errors detected depends on the data on which the program

41

operates. This is one fact that makes 'C', from a software engineering point of view,

unsuitable for large software systems.

3. Information Hiding

Information hiding is implemented very well in the Ada language. Good examples

of this are the packagee provided with the different compilers. The user is only provided

with the interface or specification of the packages, which is always the same for a

certain package. Whereas the sourcecode for the body, which may be different for each

implementation, is usually not accessible.

4. Concurrency

Ada makes multitasking possible only using constructs defined within the

language in the form of tasks and other related constructs, like rendezvous and the

pragma 'priority'. This should be a good asset in terms of efficiency and performance,

however, as of now, no compiler is available for any multi processor system, but that

fact should be eliminated by time. since compilers have already been announced for

multiprocessor systems.

5. Portability

Portability is a more negative aspect of the Ada language, even though the Ada

Joint Programming Office keeps a strict eye on the quality of the available compilers

by validating only those compilers which successfully work on a set of test programs.

At first glance this should ensure portability. The problem lies in the specification of

the language, which is manifested in the ALRM [Ref. 10] and which in some places

leaves too much leeway for the implementation of the compiler. The best example is

the pragma 'priority' which allows the assignment of relative importance on a set of

tasks, thereby controlling their order of execution. The pragma has to implemented in

every compiler, however the range of legal values is left to the particular

implementation. which results in quite different values. Since not all compilers provide

42

this Information in their documentation, a small program to check those values on any

compiler, regardless of the documentation is shown below.

with text io;
use text io;
with System;

procedure prio is

package priority io is new integer io(system.priority);
use priority io;

begin
newpage;
put ("min value for priority
put (system.priority' first);
new line;
put ("max value for priority
put (system.priority' last);
new line:

end;

A test run on three different compilers, which were available at the time of this

research produced the following results.

COMPILER VALUES FOR PRAGMA PRIORITY

AdaVantage Version 2.0 1 .. 20

INTEGRADA Version 4.01 0 .. 0

Verdix Version 5.5 0 ..99

This is only one example of a deficiency in the language specification.

The next factor contributing to Ada's bad portability is the lack of standard

libraries, provided with the compilers. As an example one might expect a package for

mathematica! functions, which are not included in the language standard. Again when

comparing the three above mentioned compilers we have the following picture:

AdaVantage INTEGRADA Verdix Ver5.5

Package name mathlib mathlib math

function ARCTAN(X) atan(x) arctan(x) arctan(x)

43

6. Hard Real Time Systems

As shown in Chapter IV.D on page 34 the programmer has possibilities to

influence the execution timing of a programming unit; the example also showed, that

a delay is only a minimum waiting period, meaning, that there is no way to tell the

maximum waiting time, which is unacceptable in hard real time systems, where

deadlines have to be met. "rhis aspect of the language is a separate research area in

itself and shall not be exploited any further here. The interested reader can find further

information in [Ref. 13, 14, 15, 16, 17].

7. Final Comment

Summarizing the points made above, the Ada language is very powerful and

suited for its purpose. The negative points should not be considered as an attempt to

detract from that fact, but is an attempt by the author to show some areas where

further improvement is needed.

B. SPECIFICATION AND PROTOTYPING

The languages SPEC and PSDL are not for programming purposes. Conceptually

they reside at a higher level of abstraction than programming languages. The

development team no longer describes a program in terms of HOW to complete a

certain task, but by specifying WHAT tasks are to be completed. Due to their complexity

and size. large software systems cannot be realized using traditional programming

languages and software engineering techniques only. No single person can comprehend

a complete system, therefore the need for communication between all people involved

in the development of such a system arises. Furthermore it is becoming more and

more difficult to prove the correctness of a program, or to do at least some testing to

insure its correctness to a certain level. SPEC is one attempt to solve this problem. It

is suitable to develop the specification for a program instead of the program itself. Since

44

the language is strictly based on mathematical rules it has the potential to solve the

proof of correctness' problem or at least bring it closer to a solution.

The problem with all specification languages, SPEC is only one of them, lies in

their application. As the small example, developed In Chapter III, shows, specifications

grow rapidly and become incomprehendable at the same pace. It is obvious that

automated tools are necessary to use SPEC on a production level to keep track of the

development stage and to insure the completeness and consistency of a specification.

As already mentioned some of those tools are presently under construction. Their

development is supported by the mathematical foundation of SPEC, a negative aspect

however is the fact that not every specification can be automatically translated into

executable code.

A type checker is needed to check that all types used within a specification at

different levels of decomposition conform, whereas a syntax directed editor must take

care of the completeness and syntactical correctness of all language constructs used.

Another very important tool is a development database, which retains the development

up to the current stage. This is important to provide the capability to go back and forth

between different levels of decomposition.

SPEC addresses the problems of reliability, modifiability and other related problems

mentioned in the Introduction. The other main problem areas in software development

are cost and feasibility: PSDL is an attempt to cope with them. It aids the development

process. After the requirements for a project have been manifested, PSDL can be used

to construct a prototype which in the long run will be a piece of executable code. PSDL

does not have a mathematical foundation like SPEC, hence it cannot be used to attack

the 'correctness' problem.

The tool development for PSDL has proceeded much further than that for SPEC.

Even though it is not possible to create an executable prototype without manual

45

interaction at the present time, tools already available are instrumental for the completed

system as their application demonstrated in Chapter II.

C. THE COMBINATION OF PSDL AND SPEC

So far SPEC and PSDL have been examined as separate systems. The latest

development in the software engineering discipline Is marked by DARPA's (Defence

Advanced Research Projects Agency) decision to create a language on top of Ada

[Ref. 18]. This language is to provide all the capabilities presently designed in SPEC

and PSDL. Future emphasis should be placed on the fusion of the two languages

combing their capabilities. Care must be taken that the resulting language is not just a

superset. which contains the two languages as complete subsets. Overlapping

constructs and methods must be eliminated. Once a minimal version of the system is

operational, it can be used to improve on itself, which should speed up the development

dramatically.

46

APPENDIX A. INS SPECIFICATION IN PROTOTYPE DESCRIPTION LANGUAGE (PSDL)

OPERATOR INS

SPECIFICATION

INPUT PresentPosition POSITION;
Course FLOAT;

Speed INTEGER;
WP 1 POSITION;
WP 2 POSITION;
WP 3 POSITION;
WP number INTEGER,
New-timeTIE
New-choice INTEGER;

OUiTPUJT PresentPosition POSITION;
Course FLOAT;
Speed INTEGER;
WF_1 POSITION;

2 POSITION;
WP-3 :POSITION;

WF _number :INTEGER;
Bear ingc FLOAT;
Distarce :FLOAT;

EN!D

IMPLEMENTATION GRAPF

Old-choice.Check keyboard ->Check keyboard
Old -cho-ice .Check keyboard ->Display-handler

New-chcice.Check keyboard ->Display handler
Beari.nc.Compute_bearina distance ->Display handler
Distane.Cornpute bearing distance ->Display handler
Speed.Display handler ->EXTERNAL

Speed.Pisplay_handler ->Computeyposition

Couise.Cisplay_handler ->EXTERNAL

Course.Display handler ->Computeposition

Old_-Position.Display handler -- > Computeposition
Bearing.Display_handler ->EXTERNAL

Distance .Display handier ->EXTERNAL

NP _l.Displayh-ndler ->EXTERNAL

WP_2.Display handler ->EXTERNAL

WP_3.Display handler ->EXTERNAL

WP-number.Display handler -- > Compute bearing distance
WE_3.Display handler ->Compute -bearing distance
"e_2.Display handler ->Compute -bearing distance
W_.Display handler ->Compute -bearing distance
WP -number.Display handler -- > EXTERNAL
Most-recentyposition.Display handler -- > EXTERNAL
New choice.EXTERNAL -- > Check keyboard
Oldt ime.Computeyposition -- > Computeposition
Most-recentyposition.Computeyosition ->Display handler
Mcst-recentyosition.Computejposition ->Compute bearing distance
WP -number.EXTERNAL ->Display_handler

New -tire.EXTERNAL ->Computeyposition

WP 1.EXTERNAL- -- > Display handier

4-7

WP 2.EXTERNAL -- > Display handler
WP 3.EXTERNAL -- > Displayhandler
Present Position.EXTERNAL --> Display_handler
Course.EXTERNAL -- > Displayhandler
Speed.EXTERNAL -- > Displayhandler

DATA STREAM

Bearing FLOAT;
Distance FLOAT;
Speed INTEGER;
Course : FLOAT;
WP number INTEGER;
WP-3 POSITION;
WP-2 POSITION;
WP- POSITION;
Old Position POSITION;
Old-choice INTEGER;
New-choice INTEGER;
Mostrecent_position POSITION;

CONTROL CONSTRAINTS

OPERATOR DISPLAY HANDLER
PERIOD is

OPERATOR COMPUTEBEARINGDISTANCE
PERIOD is

OPERATOP COMPUTEPOSITION
PERIOD Is

DESCRIPTION

(This is the root operator. It is composite and consists of the

ccmpcsite operator DISPLAY HANDLER and the atomic operators
CHECKFEYBOARD, COMPUTEBEARINGDISTANCE and COMPUTE POSITION)

END

OPERATOR CFECK KEYBOARD

SPECIFICATION

INPUT New choice : INTEGER;

OUTPUT Old choice INTEGER;
New-choice . INTEGER;

STATE Old choice . INTEGER INITIALLY 6;

END

IMPLEMENTATION ADA CHECKKEYBOARD

(The atomic operator CHECKKEYBOARD requires visibility to datastreams
OLD CHOICE and NEW CHOICE in IN-)

END

48

OPERATOR DISPLAYHANDLER

SP ECIF ICAT ION

INPUT Old choice INTEGER;
New choice INTEGER;
Bearing FLOAT;
Distance FLOAT;
Most-recentyposition POSITION;
Speed INTEGER;
Course FLOAT;
WP number INTEGER;
WP 1 POSITION;
WP 2 POSITION;
WP_3 POSITION;
PrespntPosition POSITION;

OUTPUT Speed INTEGER;
Course FLOAT;
Bearino FLOAT;
Distance FLOAT;
Wp 1 POSITION;
WP 2 POSITION;
WE_3 POSITION;
WP number INTEGER;
Ol-d Position POSITION;
Most_recentyposition POSITION;

EN:

IMPLEMENTATION GRAPH

Present Positlion.Enterypresentposition -- > WP buffer_0
WIF_1 .Enterwaypoint ->WP-buffer_1

WP2.Enterwaypoint-- WP_buffer_2
WP -3.E nter -waypoint ->WP-buffer_3

Course.Enter-course ->Course buffer
Speed.Enter speed -- > Speed -buffer
WF _ number.Enter-steer-to-waypoint -- > WP number buffer
Most RecentP sition.Displaypresentyoition -- > EXTERNAL
WP_ Numer.Displaywaypoint -- > EXTERNAL
WP -1.D' --y>a-,pin EXTERNAL
WP -2.Display_waypoint ->EXTERNAL

W 3.Dislaywaypoint ->EXTERNAL

Bearina.D~splay_bearino-and distance -- > EXTERNAL
Distance.Display bearing -and distance -- >EXTERNAL

WF _ Number.Display,_bearing_andi-distance ->EXTERNAL

Course.nDisplay-_co urse~and~speed -- > EXTERNAL
Speed.Display -course -and speed -- > EXTERNAL
Most Recent Position.WP buffer_0--> Displaypresentjposition
MostRecentPosition.WP '&buffer_-0 -- >EXTERNAL

OldPosition.WFP -buffer_0 -- > EXTERNAL
WP_1.Wrbuffer_ -- Display -waypoint
WP_2.WF buffer_2 ->Display waypoint
WP_-3.%P -buffer_3 ->Display waypoint
Bearina.Bearina-buffer -- > Display bearing_and -distance
Distance.Distance buffer -- > Display__bearing and distance
Ccurse.Ccurse -buff er -- > Display_ccrse~and~speed!
Speed.Speed_buffer -- > Display course -and-speed
WP nuiber.W?_-number -buffer ->Display waypoint
WP Number.WP Knumber -buffer ->Display- bearing -and-distance
Cc rse.EXTER,'AL -- 'Enter course
SFpee'i.EXTEF1;AL --'Enter-speed
WF numher.EXTEF7NAL -->' Enter steer to waypoint

49

Bearing.EXTERNAL -- > Bearingbuffer
Distance.EXTERNAL -- > Distance buffer
Present Position.EXTERNAL --> Enter_presentjpoaition
Most Recent Position.EXTERNAL --> WP buffer 0

WP _Nmber.EXTERNAL --> Enter waypoint
WP 1.EXTERNAL -- > Enterwaypoint
WP_2 .EXTERNAL -- > Enterwaypoint
WP_3.EXTERNAL -- > Enter_waypoint

DATA STREAM

PresentPosition : POSITION;
WP 1 : POSITION;
WP-2 : POSITION;
WP_3 : POSITION;
Course : FLOAT;
Speed : INTEGER;
WP number : INTEGER;
Most Recent Position : POSITION;
Bearing : FLOAT;
Distance : FLOAT;
WPNumber : INTEGER;

DESCRIPTION

{The composite operator DISPLAY HANDLER CONSISTS of the atomic
operators ENTERPRESENT POSITION, ENTERWAYPOINT, ENTERCOURSE,
ENTER SPEED, ENTER STEER TO WAYPOINT, DISPLAY PRESENTPOSITION,
DISPLAY WAYPOINT, DISPLAY_BEARING ANDDISTANCE,
DISPLAY COURSE AND SPEED, WP_BUFFER 0, WP BUFFER 1, WP BUFFER 2,
WF BUFFER_3, BEARING BUFFER, DISTANCEBUFFER, COURSEBUFFER,
SPEEDBUFFER and WP_NUMBERBUFFER. It requires visibility to all data
streams in INS)

END

OPERATOR COMPUTFBEARING DISTANCE

SPECIFICATION

INPUT WP number INTEGER;
WV 3 POSITION;
WP 2 POSITION;

W 1 POSITION;
Most recent-po!-tion POSITION;

OUTPUT Bearing FLOAT;
Distance FLOAT;

END

IMPLEMENTATION ADA COMPUTEBEARINGDISTANCE

(The atomic operator COMPUTE BEARING DISTANCE requires visibility to
datastreams MOST RECENT POSITION, BEARING, DISTANCE, WP_1, WP_2, WP_3 and

WPNUMBER in INST

END

50

OPERATOR COMPUTEPOSITION

SPECIFICATION

INPUT Speed INTEGER;
Course FLOAT;
Old Position POSITION;

New-time TIME;

OUTPUT Mostrecent_position POSITION;

STATE Old-time TIME;

END

IMPLEMENTATION ADA COMPUTEPOSITION

(The atomic operator COMPUTE POSITION requires visibility to datastreams

COURSE, SPEED, OLD POSITION and MOST RECENT-POSITION in INS)

END

OPERATOR. ENTEF PRESENTPOSITION

SPECIFICATION

INPUT PresentPcsition POSITION;

OUTPUT PresentPosition POSITION;

END

IMPLEMENTATION ADA ENTERPRESENTPOSITION

{The atomic operator ENTERPRESENT POSITION requires visibility to
datastream PRESENT POSITION in DISPLAY HANDLER}

EN,

OFEATOR W; BUFFEP 0

SPECIFICATION

INPUT PresentPosition POSITION;
Mostrecentyposition POSITION;

OUTPUT Old Position POSITION;
Mostrecent_position POSITION;

END

IMPLEMENTATION ADA WPBUFFER 0

(The atomic oFerator WP BUFFER 0 requires visibility to datastreams
PRESENT-POSITION, MCSTRECENTPOSITION and OLD-POSITION in DISPLAY_HANDLER)

EN

51

OPERATOR ENTERWAYPOINT

SPECIFICATION

INPUT WP number INTEGER;
WP 1 POSITION;
w! 2 POSITION;
WP-3 POSITION;

OUTPUT WP 1 POSITION;
WP 2 POSITION;
WP_3 POSITION;

END

IMPLEMENTATION ADA ENTERWAYPOINT

{The atomic operator ENTER WAYPOINT requires visibility to datastreams WPi,
WP_2, WP_3 and WPNUMBER in DISPLAYJiANDLER1

ENc

OPERATOR WF _PFFEF 1

SPECIFICATION

INPUT WE 1 POSITION;

OUTPU2T W 1 POSITION;

END

IMPLEMENTATION ADA WP BUFFER 1

{The atomic operator WPBUFFER 1 requires visibility to datastream WP 1 in
D 1 iAYHANZLEF.}

END

OPERATO R WP BUFFEF- 2

SPEC IFICATION

INPUT WP_2 POSITION;

OUTPUT WP_2 POSITION;

END

IMPLEMENTATION ADA WPBUFFEF_2

{The atomic operator WP_BUFFEP_2 requires visibility to datastream WP_2 in
DISPLAY HANDLER)

END

52

OPERATOR WPBUFFER_3

SPECIFICATION

INPUT WP_3 POSITION;

OUTPUT WP_3 POSITION;

END

IMPLEMENTATION ADA WPBUFFER_3

(The atonic operator WPBUFFER 3 requires visibility to datastream WP 3 in

DISPLAYHANDLER)

END

OPERATOR ENTERCOURSE

SPECIFICATION

INPUT Course FLOAT:

OUTPUT Course FLOAT;

END

IMPLEMENTATION ADA ENTER COURSE

(The atomic operatci ENTER-COURSE requires visibility to datastream COURSE

in DISPLAY HANDLER)

END

OPERAT FR COURSEBUFFER

SPECIFICATION

INPUT Course FLOAT;

OUTPUT Course FLOAT;

END

IMPLEMENTATION ADA COURSEBUFFER

(The atomic operator COURSEBUFFER requires visibility to datastream COURSE

in DISPLAY-HANDLER)

END

53

OPERATOR ENTER-SPEED

SPECIFICATION

INPUT Speed INTEGER;

OUTPUT Speed INTEGER;

END

IMPLEMENTATION ADA ENTERSPEED

(The atomic operator ENTERSPEED requires visibility to datastream SPEED in
DISPLAYHANDLER}

END

OPERATOR SPEED BUFFER

SPECIFICATION

INPUT Speed INTEGER;

OUTPUT Speed INTEGER;

END

IMPLEMENTATION ADA SPEED BUFFER

fThe atomic operator SPEEDBUFFER requires visibility to datastream SPEED in
DISPLAYHANDLER)

END

OPERATOR ENTERSTEER TU -AYPOINT

SPECIFICATION

INPUT WP number : INTEGER;

OUTPUT WPnumber INTEGER;

ENE,

IMPLEMENTATION ADA ENTERSTEERTOWAYPOINT

(The atomic operator ENTER STEER TO WAYPOINT requires visibility to
datastream WPNUMBER in DISPLAYHANDLER)

END

54

OPERATOR WPNUMBERBUFFER

SPECIFICATION

INPUT WP number INTEGER;

OUTPUT WP number INTEGER;

END

IMPLEMENTATION ADA WPNUMBERBUFFER

(The atomic operator WPNUMBER BUFFER requires visibility to datastream
WP_NUMBER in DISPLAY_HANDLER)

END

OPERATOR DISPLAY PRESENT POSITION

SPECIFICATION

INPUT Mostrecent_position POSITION;

OUTPUT Mostrecentposition POSITION;

END

IMPLEMENTATION ADA DISPLAY PRESENT POSITION

(The atomic operator DISPLAY PRESENT POSITION requires visibility to
datastream MOSTRECENTPOSITION in DISPLAYHANDLER)

OPERATOR DISPLAY WAYPOINT

SPECIFICATION

INPUT WP number INTEGER;
Wr 1 POSITION;
WP 2 POSITION;
WP 3 POSITION;

OUTPUT WP 1 POSITION;
WP 2 POSITION;
WP 3 POSITION;
WP-number INTEGER;

END

IMP-EMENTATION ADA DISPLAYWAYPOINT

(The atomic operator DISPLAY WAYPOINT requires visibility to datastreams
WP_1, WP_2, WP_3 and WPNUMBER in DISPLAYHANDLER)

END

55

OPERATOR DISPLAY COURSE ANDSPEED

SPECIFICATION

INPUT Course FLOAT;
Speed INTEGER;

OUTPUT Course FLOAT;
Speed INTEGER;

END

IMPLEMENTATION ADA DISPLAYCOURSEANDSPEED

(The atomic operator DISPLAY COURSE AND SPEED requires visibility to
datastreams COURSE and SPEED in DISPLAYHANDLER)

END

OPERATOR BEAPINGBUFFER

SPECIFICATION

INPUT Bearing FLOAT;

OUTPUT Bearing FLOAT;

END

IMPLEMENTATION ADA BEARINGBUFFER

IThp atomi! operator BEARINGBUFFER requires visibility to datastream
BEARING in DISPLAY_HANDLER)

END

OPERATOR DISPLAY BEARING AND DISTANCE

SPECIFICATION

INPUT Bearing FLOAT;
Distance FLOAT;
WE-number INTEGER;

OUTPUT Bearing FLOAT;
Distance FLOAT;
WP number INTEGER;

END

IMPLEMENTATION ADA DISPLAY BEARINGANDDISTANCE

{The atomic operator DISPLAY BEARING AND DISTANCE requires visibility to
datastreams BEARING, DISTANCE and WP7NUMBER in DISPLAYHANDLER)

END

56

OPERATOR DISTANCEBUFFER

SPECIFICATION

INPUT Distance FLOAT;

OUTPUT Distance FLOAT;

END

IMPLEMENTATION ADA DISTANCEBUFFER

{The atomic operator DISTANCEBUFFER requires visibility to datastream
DISTANCE in DISPLAY HANDLER}

END

5-7

APPENDIX B. ADA SOURCE CODE LISTING

-- UNIT NAME I ins.a
-- cscI-NAME
-- UNITDESCRIPTION

-- UNITSPS REFERENCE

-- UNIT-CALLINGSEQUENCE

-- EXTEPNALUNITSCALLED

-- INPUTS

-- OUTPUTS

-- CREATED I 23 January 1989
-- AUTHOR I herbert guenterberg
-- DATE ------------ AUTHOR -------- REVISION # -- PR - TITLE

-- This is the main program for the ins-aimulator. Compilation sequence:

-- Term s.a,
-- Term b.a,

-- Data sto.a,
-- Mathutil.a,

-- Nautil.a,

-- Ins.a

-- To link on a UNIX based system with a VERDIX compiler:

a.ld -o ins ins -Itermcap -icurses

with TEXT ID;
use TEXTIC;
with TERMINAL:
use TEPRMINAL ;
with NA"UTTIL;
use NAVUTIL;
with CALENDAP;
use CALENDAP;
with FLOATINZ PCIIT UTILITIES;

proceomut iNo is

package FLOATUTIL is new FLOATINGPOINTUTILITIES(FLOAT);
use FLOAT UTIL;

package INT 10 is new INTEGER IO(INTEGER);
use INTIO;

-- initialization of variables

INITIALPOSITION : PCCITION :- (0.0, 0.0);
INITIALCOURSE : FLOAT := 0.0;
INITIAL SPEED INTEGER : 0;
INITIAL BEARING : FLOAT := 0.0;
INITIAL-ISTANCE : FLOAT : 0.0;
INITIAL-WP : INTEGEP := 1;

58

-- task declarations; names are selfexplanatory for each task

task CHECK KEYBOARD is
entry START;
entry STOP;
entry CONTINUE:

end CHECK KEYBOARD;
task COMPUTE POSITION is

entry START;
end COMPUTE-POSITION;

task COMPUTE BEARING DISTANCE is
entry START;

end COMTUTEBEARINGDISTANCE;

task DISPLAY HANDLER is

entry MAKE CAOICE(CHOICE : in CHARACTER);
end DISPLAYHANDLER;

-- task bodies

task body CHECK KEYBOARD is
NEW CHOICE C HARACTER '6';
OLD CHOICE CHARACTER '6';
TASK START TIME;
TASKDONE TIME;

begin
accept START do

DISPLAY HANDLER.MAKECHOICE(NEWCHOICE);
accept STOP;
accept CONTINUE;
SPECIAL IV;

end START;
loop
TASK START := CLOCK;
if :"ZY .P.ZSSED then
GET(NEW CHOICE);
if NEW CHOICE > '0' and NEW CHOICE <= '9' then

if NEW CHOICE > '0' and NEWCHOICE < '6' then

CLEAR LINE (3, 7);
NORMAL IO;

end if;
DISPLAYHANDLER.MAKE CHOICE(NEW CHOICE);

accept STOP;
accept CONTINUE;
if NEW CHOICE > '0' and NEWCHOICE < '6' then

CLEAFLINE(3, 7);
SPECIAL IC;

end if;
end if;

end if;

if NEW CHOICE < '6' then
DISPLAYHANDLER.MA._CHOICE(OLD CHOICE);
else
DISPLAYMANDLER.MAKECHOICEtNEWCHOICE);

end if;
accept STOP:
accept CONTINUE;
if NEW CHOICE > '5' then
OLD CHOICE :- NEWCHOICE;

end if;
TASK DONE CLOCK;
delay 1.0 - (TASKDONE - TASkSTArT);

59

end loop;
end CHECK KEYBOARD;

task body COMPUTEPOSITION is
ACTUAL TIME : TIME;
OLD TIME TIME;
INTERVAL DURATION := 0.0;
PRESENT POSITION : POSITION;
TEMP COURSE FLOAT;
TEMP SPEED FLOAT;
INT SPEED INTEGER;
TASK START TIME;
TASK DONE TIME;

begin
accept START do
OLD TIME := CLOCK;

end START;
loop

TASK START CLOCK;
ACTUAL TIME CLOCK;
INTERVAL ACTUAL TIME - OLDTIME;
OLEL TIME ACTUALTIME;
W_ BUFFER(O) .RECALL(PRESENT POSITION);
COURSE BUFFER.RECALL(TEMPCOURSE);
SPEED BUFFER.RECALL(INT SPEED):
TEM _SPEED := FLOAT(INT-SPEED);
UPDATE POSITTON(INTERVAL, PRESENIPOSITION, TEMWCOURSE,

TEM_ SPEED);
WP BUFFER,(0) .STOPE (PRESENTPOSITION);
TASK rONE CLOCK;
delay i.0 - (TASKDONE - TASKSTi--');

end loop;
end C DMPUTEPOSITION;

task body COMPUTEBEARING DISTANCE is
PRESENTPOSITION POSITION;
TARGETPOSITION POSITION;
TEMW REAPING FLOAT;
TEMP DISTANCE FLOAT;
WPNO : WAYPOINT RFANGE;
TASK STAPT TIME;
TASF-DONE TIME;

begin
accept START;
looF
TASK START := CLOCK;
WF NUIMBEP BUFFER.RECALL(W _NO);
WRBUFFEP(O) .PECALL(PRESENTPOSITION):
WP BUFFER(WF NO).RECALL(TARGET POSITION);
BEARING DISTANCE (PRESENTPOSITION, TARGETPOSITIoN,

TEMP BEAPING, TEMP DISTANCE);
BEARING BUFFEP.STORE(TEMP BEARING);
DISTANCE BUFFEP.STORE(TEMPDISTANCE);
TASK DONE CLOCK;
delay 1.0 - (TASK DONE - TASKSTART);

end loop;
end COMPUTE BEAPING DISTANCE;

60

task body DISPLAY HANDLER is
OLD-CHOICE :CHA'RACTER '1';
NEW-CHOICE :CHARACTER '6';

procedure ENTER PRESENTPOSITION is
begin

CHECKKEYBOARD.STOP;
GOTOXY(DR - 3, Cl);
PUT("ENTERING PRESENT POSITION");
GETPOSITION(O);
CHECK KEYBOARD. CONTINUE;

end ENTERPRESENT_POSITION;

procedure ENTERWAYPOINT is
WP_-NO :INTEGER :=MA.XWAYPOINTS + 1;

begin
CHECKKEYBOARD. STOP;
GOTOXY (DR - 3, Cl) ;
PUT("ENTERING WAYPOINT NO:");
while WP TNO > MAXWAYPOINTS loop

G1-TOXY'(V R, C1);
PUT("ENTEF A WAYPOINT NUMBER:
GET(WFN2);

end loop;
GOTOXY(DF - 3, C2);
PUT(INT_-TO_-CHAP (Wr'_NO))

GETPOSIT1CN(WPNO);
CHEC K KEYBC ARD.CONTINUE,!

end ENTER-WAYPOINT;

pro,:edure ENTER _COURSE is

beoin

CHECKKEYBOARD.STOP;
GET CO5URSE;

CHECKKEYBOARD. CONTINUE;

end ENTER-COURSE;

Frc,:edure ENTEP SPEED is

he~ifl
Ci4ECKKEYBCAF!D. STOP;

GET SFEE:;

CHECK -KEY2PR. CONTINUE;
enzi ENTEF SFEELO;

Frszedurs ENTERSTEER_TO WAYRCINT is
WF _NC : INTEG'EP. := MAY. WAYPCINTS + 1;

be--,

CHECK KEYBOAR- .S TOP;
while WP -NOI > MAY _WAYPOINTS loop

GOTOXY(DFP, Cl);
PUT ("ENTER. THE TARGET WAYPOINT NUMBER:
GET(WPND,;

end looF;
WP' NUMBER BUFFER.STORE(WP NO);
CHECKKEYBOARD .CONTINUE;

end ENTER STEEP TC WAYPOCINT;

61

procedure DISPLAYPRESENT POSITION is
PRESENTPOSITION POSITIONJ;

begin
C1HECK KEYBOARD.STOP;
CLEAR LINE(DR, 1);
WPBUTFER(0) .RECALL(PRESENTPOSITION);
DISPLAY_-POSITION(PRESENT POSITION);
GOTOXY (DR, C2 + 20) ;
PUT("PRESENT POSITION");
CHECK KEYBOARD .CONTINUE;

end DISPLAYPRESENTPOSITION;

procedure DISPLAY_-WAYPOINT is
WP NO :INTEGER;
WAYPOINT :POSITION;

begin
CHECK KEYBOARD.STOP;
WP_-NUKIER_-BUFFER.RECALL(WPNO);
CLEARLINE(DR, 1);
WPBUFEP(WP NO) .RECALL(WAYPOINT);
DISPLAY POSITION (WAYPOINT);
GOTCXY(DfP, C2 + 20);
PUT I"WAYPCINT ");

PUT(INTTOCHAR(WPNO));

CHECK KEYBOARD CONTINUE;

end DISPLAYWAYPOINT;

procedure DISPLAY_-COURSE AND SPEED is

T COURSE :FLOAT;

IN4TSPEED :INTEGER;
TSPEED :FLOAT;

begin
COURSE BUFFER.RECALL(T COURSE);

SPEEE BiUFFER.RECALL(INTSPEED);

T SPEED : FLOAT{.INTSPEED);,

CHECKKEYBOARD.STOP;

GOTCXY(D., Cl);

PUT(FLOAT TO_-STRING(T COURSE));

GC T CXY(D R Ci);

PUT(FLOAT TOSTRING(TSPEED));

CHECK KEYBOARD .CONTINUE;

end DISPLAYCOURSEANDSPEED;

procedure DISPLAY_BEA.PING_-ANDDISTANCE is

T BEARING FLOAT;

TDr:STANCE FLOAT;

WP- :N INTEGER;

be ai r

CHECK KEYBOARD.STOP;

BEARING -BUFFER.RECALL(TBEARING);
DISTANCEBtJFFER.RECALL(TDISTANCE);
WP_-NUNBEP._ BUFFER.RECALL(WPNO);
GOTOXY(DR, Cl);

PUT(FLOATTOSTRING(TBEARING));
GOTOXY(DR, C2 - 5);
PUT(FLOATTOSTRING(T DISTANCE));

GeDTOXYY(DP C2 + 20) ;
PUT(INT_-TO_-CHAR)WPNO));

CHECE KEYBOAR.D.CONTINUE;

end DISPLAYBEARING AND DI STANCE;

62

begin
--displayhandler
loop
accept MAKE CHOICE(CHOICE : in CHARACTER) do

NEW CHOICE :- CHOICE;
end MAKE CHOICE;
if OLD CHOICE /= NEW-CHOICE then
case NEW CHOICE is
when '6' I '7' ->

PREPARE POSITIONDISPLAY;
when '8' =>
PREPARECOURSESPEEDDISPLAY;

when '9' =>
PREPARE BEARING DISTANCE DISPLAY;

when others =>
null;

end case;
OLD CHOICE :- NEW CHOICE;

end if;
case NEW CHOICE is
when '1' =>

ENTER PRESENT POSITION;
when '2'

=>

ENTER WAYPOINT;
when '37 =>

ENTER COURSE;
when '4' =>
ENTER SPEED;

when '5' =>
ENTERSTEER TC WAYPOINT;

when '6' =>
DISPLAY PRESENTPOSITION;

when '7' =>
DISPLAY WAYPOINT;

when '8' =>
DISPLAYCOURSEANDSPEED;

when '9' =>
DISPLAY BEARINGAND-DISTANCE;

when others =>

null;
end case;

end loop;
end DISPLAY FA-NDLEP;

beoin -- MAIN

-- initialize data buffers

for WP NC in WAYPOINTPANGE loop
WP BUFFER(WPNO) .STORE !ITIALPOSITION);

end loop;
COURSE BUFFER.STORE(INITIAL COURSE);
SPEED BUFFER.STORE(INITIAL SPEED);
BEARING BUFFER.STORE(INITIAL BEARING);
DISTANCE BUFFEP.STORE(INITIAL DISTAnCE);
r- NUM-BER BUFFEF.STOPE(INIT:AL W ;

63

-- initialize screen and get initial user input

PREPARE SCREEN;
GET POSITION(O);
GET COURSE;
GET SPEED;
SPECIALIO;

-- start tasks

COMPUTE POSITION.START;
COMPUTEBEARING DISTANCE.START;
CHECKKEYBOARD. START;

end INS;

64

-- UNIT NAME I mathutil.a

-- CSCI NAME
-- UNIT-DESCRIPTION

-- UNIT SPS REFERENCE I none
-- UNIT CALLING SEQUENCE

-- EXTERNAL UNITSCALLED I none
-- INPUTS

-- OUTPUTS

-- CREATED I 17 November 1988
-- AUTHOR I herbert guenterberg
-- DATE ------------ AUTHOR -------- REVISION # -- PR # .--- TITLE

-- This package provides functions which are not specific to this application
-- and are not provided by the standard math library. The names of the
-- functions and procedures and their purpose are self explanatory. They are in
-- part taken from: Grady Booch; Software components with Ada.

generic
type NUMBER is digits <>;

package FLOATINGPOINTUTILITIES is
type BAoZ is ranye 2 .. 16;
type NUMBERS is array (POSITIVE range <>) of NUMBER;

function INTEGERPART (THENUMBER : in NUMBER) return INTEGER;

function REALPART (THENUMBER : in NUMBER) return NUMBER;

function FLOOR (THENUMBER : in NUMBER) return INTEGER;

function CEILING (THENUMBER : in NUMBER) return INTEGER;

function ISPOSITIVE (THENUMBER : in NUMBER) return BOOLEAN;

function ISNEGATIVE (THENUMBER : in NUMBER) return BOOLEAN;

function INT TO CHAR (INNUM : in INTEGER) return CHARACTER;

function CHAP.TCINT (INNUM : in CHARACTER) return INTEGER;

end FLOATINGPOINTUTILITIES;

package body FLOATING POINT UTILITIES is

function INTEGEPPART (THENUMBER : in NUMBER) return INTEGER is
begin

if IS NEGATIVE (THENUMBER) then
return CEILING (THENUMBER);

else
return FLOOR THE NUMBER);

end if;
end INTEGEPPART;

function REALPAPT (THENUMBER : in NUMBER) return NUMBER is
begin

return abs (THENUMBER - NUMBER(INTEGEPPART(THENUMBER)));
end REAL PAPT,

65

function FLOOR (THE NUMBER : in NUMBER) return INTEGER is
RESULT : INTEGER := INTEGER(THENUMBER);

begin
if NUMBER(RESULT) > THE NUMBER then

return (RESULT - 1);
else

return RESULT;
end if;

end FLOOR;

function CEILING (THENUMBER : in NUMBER) return INTEGER is
RESULT : INTEGER := INTEGER(THE_NUMBER);

begin
if NUMBER(RESULT) < THE NUMBER then

return (RESULT + I);
else
return RESULT;

end if;
end CEILING;

function IS POSITIVE (THE NUMBER in NUMBER) return BOOLEAN is
begin

return (THE NUMBER > 0.0);
end IS PCSITIVE;

function IS NEGATIVE (THENUMBER in NUMBER) return BOOLEAN is
begin

return (THE NUMBER < 0.0);
end IS_NEGATIVE;

function INT TO CHAR (INNUM in INTEGER) return CHARACTER is
OUTNUM : CHARACTER '0';

beain
case INNUM is

when 0 =>
OUTNUM '0';

when 1 =>

when 2 =>

OU TN UM '2;
when 3 =>

CUTNUM : 3';

when 4 =>

OU0TJM '4';
when 5 =>

OUTNUM '5';
when 6 =>

OUTNUM: '6';
when 7 =>

OUTNUM '7';
when 8 =>

OUTNUM '8',
when 9 =>

OUTNUM '9';
when others =>

OUTNUM := '0';
end case;
return OUTN!M;

end INT TO CHAP.;

66

function CHAR TO INT (INNUM in CHARACTER) recurn INTEGER is
OUTNUM : INTEGER 0;

begin
case INNUM is

when '0' ->
OUTNUM 0;

when 1' >

OUTNUM := 1;
when '2' =>
OUTNUM 2;

when 3' >

OUTNUM 3;
when 4' =>
OUTNUM 4;

when '5' =>
OUTNUM 5;

when '6' ->
OUTNUM 6;

when '7' =>
OUTNUM := 7;

when '8' =>
OUTNUM := 8;

when '9' =>

OUTNUM := 9;
when others =>

OUTNUM := 0;
end case;
return OUTNUM;

end CHAP TO INT;

end FLOATING POINT UTILITIES;

67

-- UNTT NAIE navutil.a
-- CSCI NAME

-- UNIT-DESCRIPTION

-- UNIT SPS REFERENCE

-- UNIT CALLING SEQUENCE
-- EXTERNAL_UNITS_CATLED I textio, terminal, floating_pointutilities,
-- datastorage

-- INPUTS

-- OUTPUTS

-- CREATED 19 November 1988
-- AUTHOR herbert guenterberg
-- DATE ------------ AUTHOR -------- REVISION # -- PR # .--- TITLE

-- This package provides the routines needed in navigation programs in general.

with DATA STORPGE;

package NAVUTIL is
MAX WAYPCINTS : INTEGER := 3;
subtype WAYPOINT RANGE is INTEGER range 0 .. MAX WAYPOINTS;
type POSITION is

record
LATITUDE, LONGITUDE : FLOAT := 0.0;

end record;
subtype LAT STR is STRING (1 .. 7);

subtype LON-STR is STRING (1 .. 8);
subtype SPEEDSTR is STRING (1 .. 3);
subtype COURSE STR is STRING (1 .. 5);
subtype OUTSTRING is STRING (1 .. 5);

function FLOAT TOSTRING!REAL_IN in FLOAT) return OUTSTRING;

procedure GETPOSITION (WP NO : in WAYPOINTRANGE);

procedure GETSPEED;

procedure GETCOURSE;

procedure DISPLAY POSITION (T POS in POSIT-ON);

procedure BEARINGDISTANCE (POSI in POSITION; POS2 : in POSITION; BRG out

FLOAT; DIST : out FLOAT);

procedure UPDATEPOSITION (INTERVAL : in DURATION; TPOS : in out POSITION;
COURSE : in FLOAT; SPEED : in FLOAT);

package POSITIONSTORAGE is new DATASTORAGE(POSITION);

package FLOATSTORAGE is new DATASTORAGE(FLOAT);

package INTEGEP STORAGE is new DATASTORAGE(INTEGER);

68

WP BUFFER array (0 . MAXWAYPOINTS) of POSITIONSTORAGE.BUFFER;
COURSE_BUFFER FLO'AT STORAGE.BUFFER;
SPEED BUFFER I~fEGERSTORAGE.BUFFER;
BEARINGBUFFER FLOAT STORAGE.BUFFER;
DISTANCE BUFFER FLOAT STORAGE.BUFFER;
WPNUMBERBUFFER INTEGER STORAGE.BUFFER;

end NAVUTIL;

with TEXT 10;
use TEXT_10;
with TERM INAL;
use TERMINAL;
with MATH;
use MATH;
with FLOATINGPOINTUTILITIES;
with DATASTORAGE;-

package body NAVUTIL is

package FLOATUTIL is new FLOATING POINT UTILITIES(FLOAT);
use FLOATUTIL;

function DEG_TORAD (DEG :in FLOAT) return FLOAT is
beain

return DEG * PI / 180.0;
end DEG TO -RAD;

function PRADTODEG (RAD :in FLOAT) return FLOAT is
be qi n

return RAD *180'.0 / rI;
end RADTODEG;

function FLOAT_-TO_-STRING(REAL IN :in FLOAT) return OUT-STRING is
INT INTEGER INTEGER PART(REAL IN);
DECIMAkL FLOAT .- REALPAiRT(REALIN);
T_-STRING OUT-STRING;

begin
T_STPING(1) :=INT_-TOCH.A?(INT /100);
INT :=INT mod 100;
T STPING(2) INT TO CHAP.(INT /10),
TSTFJNG(3) INTTOCCAF(INT mod 10);
TSTRING(4)
TSTFINGfE) INT TO CHAR(INTEGERPART(DECIMAL *10.0));

return T-STRING;
end FLOAT TO STRING;

69

-All procedures of name GET **receive an input string and convert it to
-the appropriate data typv

procedure GETPOSITION (WP -NO :in WAYPOINT P.MNGE) is
T-LAT -S LAT -STR;-
T LON S LON STR;
AT DEG, LONDEG INTEiGER;

LAT M1IN, LONMIN FLOAT;
SUC'Ei. SUCC2, SUCC3 BOOLEAN :FALSE;
TP05 POSITION (0.0, 0.0);

be gin.
CLEAPRLINE(7, 5);
GOTOXY (DR, C1) ;
PUT("LATITUDE NOOOO.0");
GOTOXY(DR, C2);
PUT (LONGITUDE WOOOOO .0");
while not SUCC3 loop

T L.AT S :="NOOOO.0';
GE'TOXY(DR, Cl + 11);
PUT(TLATS);

GOTOXOY1DR, Cl + 11);

GET(T LAT S);
if TLATS(6) =''and (TLATS(l) 'N' or TLATS(l) ='n' or
T LAT -(. S 'S' or T_LAT_-S(C= 's') then
SUCC1 TRUE;

else
S)3201 FALSE;

end if;
LAT -DEG CHAR TO -INT(TLATS(2)) * 10 + CHA.R TOINT(TLATS(Jfl;
LATMIN (FLOA T(CHAP TO INT(7_tATS(4))) * 10.0 + FLOAT(CHA. TO INT(

TLATS(5))) * 1.0 + FLCAT(CHARTOINT(TLATS(7f) * 0.1) /60.0;
if EATM IN < 1.0 then

SUCC2 SUCCI and TRUE;
else

STJCC2 FALSE;
end if;
if (FLOAT(LAT DEW LATMIN) <= 90.C then

SUCC-3 SU CC2 and TRUE;
else

STUIC FALSE;
end if;
if T LAT -S(l) ='S' cr TLAT-S(1) ='s' then
T_-POS.LATUDE EEGTORAD(FLOAT(LATDEG) + LATNIN) * -2.0);

else
T_-POS.LATITUDE DEC TO HAD (FLOAT(LATDEG) + LAT MIN);

end if;
end loop;
SUCC3 :=FALSE;
while not SUCC3 loop

T LON S :="W00000.01';
GO-TCXY(DP, C2 + 10);
PUT(TLONS);
GCTOXYi(DP, C2 + 10);

GET(TLON_5);
4f TLON_5(7) = 'and (T LON S(1) - W' or T LON_5(1) = w' or
T LON S (1) = 'V' cr TLONi-S(l) - 'e') then

S U C TRUE;
else

SU-71 : FALSE;
end if;

70

LON DEG CHAP. TO INT (TLONS () *100 + CHARTOINT (TLONS (3)) *0 +
CHAP.TOINT(T-LONS(4)l;

LON -MIN :=(FLOAT(CHAPTO INT(T LONS(5))) * 10.0 + FLOAT(CHARTOINT(
T -LON_-S(6))) * 1.0 + FLrOAT(CHARTOINT(TLON_5(B)))* 0.1)/ 60.0;

if LON MIN < 1.0 then
SUCC2f SUCCi and TRUE;

else
SUCC2 FALSE;

end if;
if (FLOAT(LONDEG) + LONMIN) <- 180.0 then

SUCC3 SUCZ 2 and TRUE;
else

SUCC3 FALSE;
end if;

if T LON_5(W - 'E' or T LON 5(1) - 'e' then
T_-POS.LONGITUDE : EGTORAD(FLOAT(LONPEG) + LON-MIN) * -1.0);

else
T_-POS.LONGITUDE DEGTORAD(FLOAT(LONPEG) + LONMIN);

end if;

end loop;
WP 'FBUFFER (WP_-NO) .STOPE(TPOS);

end GETPOSITION,

procedure GET_SPEED is
SUCC BOCLEAN FALSE;

SPEED S SPEED -STR "000",
SPEEDI TNTEGER. 0

beq~in

CLEAR LINE(DR, 3);

GOTOX7Z(DR, C 1)
PUT("SPEED :");
while not SUCC lop

GO-TOXY(DR, Cl + E?);

PUT(SPEEDS);

GOTOXY(DRi, Cl + 8);
GET(SPEEDS);

SPEED -I :=CHAP._TOINT(SPEED_5(1)) *100 +CHA.R TOINT(SPEED 5(2)) *10+

CHAP TO INT(SPEE: S(3));

if SFEEED I > 1 and SPEEDI < 500 then

St7CC TRPUE;

else

SUCC FPALSE;
end if;

end lop;

SPEEZ R2FFE=R.ST2--.E SPEED I);

end GE: SPEE:

71

p-ocedure GET COURSE is
SUCCI, SUCC2 : BOOLEAN FALSE;
COURSE S : COURSESTR := "000.0";
COURSEF : FLOAT 0.0;

begin
CLEAR LINE(DR, 3);
GOTOXY(DR, CI);
PUT("COURSE :");
while not SUCC2 loop

GOTOXY(DR, Cl + 10);
PUT(COURSE S);
GOTOXY(DR, C1 + 10);
GET(COURSE S);
if COURSE S(4) ' ' then

SUCCI TRUE;
else

SUCCI :1 FALSE;
end if;
COURSE F : FLOAT(CHAR TO INT(COURSE S(1)) * 100 +

CHAP, TO INT(COURSE S(2)) * 10 + CHAR TO INT(COURSES(3))) +
FLOAT(CAR _TO INT(COURSES(5))) * 0.1; if COURSEF >= 0.0 and COURSE F <
359.9 then

SUCC2 SUCCI and TRUE;
else
SUCC2 := FALSE;

end if;
end loop;
COURSE BUFFER.STORE(COURSEF);

end GET-COURSE;

-- All procedures of name DISPLAY_*** take an input and convert it to a string
-- for screen output

procedure DISPLAY POSITION (TPOS : in POSITION) is
TEMPLAT FLOAT RAD TO DEG(TPOS.LATITUDE);
TEMPLON FLOAT RAD TO DEG(T POS.LONGITUDE);
T LAT S LAT STR;
T LON S LONSTR;
LAT DEG, LON DEG INTEGER;
LAT MIN, LON MIN FLOAT;
LAT MIN_INT, LON MIN INT INTEGER;
LATMINREAL, LONMINREAL FLOAT;

begiin
T LAT S(E)
TLON-S(7)
if IS-NEGATIVE(TEMPLAT) then
TLATS(l) '';

else
TLATS(1) : 'N';

end if;
TEMPLAT abs (TEMPLAT);
LAT DEG INTEGERPART(TEMPLAT);
T LAT S(2) INT TO CHAR(LAT DEG / 10);
T-LAT S(3) := INT TO CHAR(LAT DEG mod 10);
LAT MIN :- REAL PART(TEMPLAT) * 60.0;
LAT-MIN INT := INTEGER PART(LAT MIN);
LAT-MIN REAL : REAL PAT (LATMIN);
T_LAT S(4) INT TO CHAR(LAT MIN_INT / 10);
T LAT S(5) INT TO CHAR(LAT MIN INT mod 10);
T-LAT-S(7) INT TC CHAR(INTEGEP-PART(LATMIN PEAL 10.0));
if IS-NEGATIE(TEMPLON) then

72

TLON_5(1) ''
else
TLON_5 (1) W

end if;
TEMPLON ebs (TFMPLON);
LONDEG INTEGERPART(TEMPLON);
T ON S(2) :=INTT OCRAR(LONDEG / 100);
LONDEG := LON-DEC mod 100;
T iON S(3) INT TO CHAR(LONDEG / 10);
T LON S(4) :INT-TOCHAR(LONDEC mod 10);
LON MIN :=REALPART(TEMPLON) * 60.0;
LONMIN INT :=INTEGERPART(LONMIN);
LONMIN REAL := REAL PART(LONMIN);
T LON S5(5) INT TO CHAP.(LONMININT / 10);
T LON S(6) INT TOCHAR(LONMININ? mod 10);
T LON S(B) INT TOCHAR(INTECERpART(LON KIN REAL *10.0));

GOETOXY(DR, Cl);
PtIT(TLATS);
GOTOXY(DR, C2 - 5);
PtYT(TLON S);

end DISPLAYPOSITION;

procedure BEAYIN&_- -DISTANCE (POSI: in POSITION; P052 in POSITION; BRc- out
FLOAT; DIST :out FLOAT) is

LONI FLOAT POS1.LONGITUDE;
LON2 FLOAT PCS2.LONGITJ0E;
LAT1 FLOAT POSI.LATITUDE;
LAT2 FLOAT POS2.LATITUDE;
LO01FI-F FLOAT LONZ - LON1;
APO_01FF FLOAT 0.0;
D FLOAC 0.0;
B FLOAT 0.0;

procedure DISTANCE (LATI: in FLOAT; LAT2 in FLOAT; LONDIFF in FLOAT;
DIST :out FLOAT) is
D FLOAT -= 0.'0;

beciin
D0: SIN(LATI * SIN(LAT2) + COS(LAT1) *COS(LAT2) *COS(LONDIFF);
if L) 0.0 then~

D AP.CTAN(SQP.T(1.0 - 0 * 0) / D) * 10800.0 /PI;
end if;
DIST : ahs (D);

end DISTANCE;
bezyin

CISTANCE(LAT1, LAT2, iODN 01FF, DIST);

if LATI = L.AT2 then

i! LON1 < L0142 then

BPJ; 270.0;
else

BRG 90.0;

end if;
end if;
if LO141 = LON2 then

if LAT1 > LAT2 then
EG 180.0;

else
= 00.0

end if;
el~se

E : SIN (LON_01FF) /' (COS(LAT1) *SIN(LAT2) /COS(LAT2) -SIN(LNT1)

C-S (LON 01FF);
E : APCTAN(B) FI8.0 P;

-73

if LONI > LON2 and LAT1 > LAT2 then
ERG :=180.0 - B;

end if;
if LON1 > LON2 and LATi < LAT2 then

BRG :=0.0 - B;
end if;
if LONI < LON2 and LATI > LAT2 then

BRG :=180.0 - B;
end if;
if LON1 < LON2 and LATi < LAT2 then

BRG :=360.0 - B;

end if;
end BEARINGDISTANCE;

procedure UPDATE_-POSITION (INTERVAL :in DURATION; TP05 in out POSITION;

COURSE :in FLOAT; SPEED :in FLOAT) is

T COURSE FLOAT DEGTOP.AD((90.0 - COURSE));

LTINC FLOAT 0.0;

LONINC FLOAT :~0.0;
DISTANCE FLOAT 0.0;

becin
L:STANCE SPEED /3600.0 *FLOAT(INTE.VAL);

LATIN2 DISTANCE * SIN(T COURSE) /60.0 * PI , 180.0;

LON INC DISTANCE * COS(TCOURSE) /60.0 * P1 180.0;

LONINC LONINC 7'COS(TPOS.LATITUDE);
if C'Z SE 0.0 or COURSE =360.0 or COURSE = 180.0 then

TP0S.LATITUDE :=TPOS.LATITUDE + LATINC;

if CURSE =90.0 cr COURSE = 270.0 then

TPC-S.LONGITUDE TPOS.LONGITUDE - LON-INC;

else
T -P:'S .LATITUDE T_-POS.LATITJDE + LATINO;

T POS.LONGITUDE :=T POS.LONGITUDE - LON-INC;,
enz! -'f;

en~i if:
end UPDATE POSITION;

en-i NA.?TL;

74

-- UNIT NAME TERMS.A

-- CSCINAME

-- UNIT DESCRIPTION SUPPORT TERMINAL INTERFACE

-- UNIT SPS REFERENCE

-- UNIT-CALLING SEQUENCE

-- EXTERNAL UNITS CALLED I
-- INPUTS

-- OUTPUTS

-- CREATED 17 November 1988

-- AUTHOR herbert guenterberg, PUBLIC DONIAIN
-- DATE ------------ AUTHOR -------- REVISION # -- PR # .--- TITLE

-- This package supplies the atomic functions and procedures used by the main
-- program to modify screen output to fit the application

package TERMINAL is
DASH-LINE : constant STRING

-- column and row definitions for screen output

Cl INTEGER 5;
CZ INTEGER 40;
DR INTEGER 7;

-- UNIX specific procedures needed to allow monitoring keyboard interrupt

procedure NORMAL 10;

procedure SPECIAL IC;

-- clear the screen

procedure CLEA. SCREEN;

-- position the cursor anywhere on the screen

procedure GCTOXY(ROW, COLUfM : in INTEGER);

-- takes the first line and the number of lines to be cleared

procedure CLEA LINE(LINE, NUMBER : in INTEGER);

-- monitors key -oard interrupt has to be used in conjunction with NORMAL IO
-- and SPECIAL -C

function KEYPRESSED return BOOLEAN;

-- prepare the screen for different output modes

procedure PREPARE POSITIONDISPLAY;

proceiure PREIAF.E COURSE SPEED DISFLAY;

procedure PREPAR.F BEARING DISTANCE DISPLAY;

prz:ed-jre FPEFAPE SCREEN:
e:,d TERX.INAL:

75

-UNIT NAME~ term-b.a

-UNIT-DESCRIPTION I SUPPORT TERMINAL INTERFACE

-UNITSPS REFERENCE
-UNITCALLINGSEQUENCE

-YERNAL UNITS CALLED I TEXT_10, ASCII, CURSES, IOCTL, SYSTEM
I- NP U TS

-- OUTPUTS
-CREATED 1 17 November 1988
-AUTHOR I herbert guenterberg / PUBLIC DOMAIN
-DATE--------------AUTHOR----------REVISION # -- PR #--TITLE ------

-This package body is the only part of the program that contains TERMINA.L
-specific code

with TEXT 10;
use TEXTIC;
with CURSES;
use CURSES;
with IOJCTL;
use IOCTL;
with SYSTEM;
use SYSTEM;

package body TERMINAL is

package INT -IC is new TEXT IO.INTEGERIO(INTEGER);
use INT_10;
use ASCII;

type TERMINA.LTYPE is (SUN, 'rT:00);
TERMN TERMINALTYPE :=SUN;

procedure NORMAL 10 is
begin
CUPSES .ECHC;
CUPSi5 .NO-RMCDE;

end NORMAL IC;

procedure SPECIA-L IC is
begi4n

CURSES .NOECH?;
CRSES. CRNODEE

end SPECIAL_10;

procedure CLEAFSCREEN is
begin

NEWPAGE,
end CLEAR SCREEN;

76

procedure GOTOXY(ROW, COLUMN: in INTEGER) is
begin

case TERM is
when SUN =>
PUT(ESC & "[");
INTIO.PUT(ROW, 1);

PUT(';');
INTIO.PUT(COLUMN, 1);

PUT('f');

when VT100 =>

PUT(ESC & "[");

INT IO.PUT(ROW, 1);

PUT(';'),

INT IO.PUT(COLUMN, 1);

PUT('f');
end case;

end GOTOXY;

procedure CLEAR LINE(LINE, NUMBER in INTEGER) is
beain

GCTOXY(LINE, 1);

for I in 1 .. NUMBER loop
for J in 1 .. 79 loop

TEXT I-.PUT ...);
end loop;
NEW LINE;

end loop;

end CLEAS L:NE;

funotion KEY PRESSED return BOOLEAN is
GOC INTEGER;
INT VAR : INTEGER= 0;
A :-SYSTEM.ADDRESS INT VAR'ADDRESS;

bez4n
GO := IOCTL.IOCTL(0, FIONREAD, A);

return INT VAR > 0:

end KEY PRESSES;

procedure PREFARE POSITION DISPLAY is
begin

CLEAP LINE(DR, 3);

GOTOXYj(E, Cl);
TEXT IC.PUT("--......--';

GOTOXY(8, C2 5);
TEXT bO.PUT('---------

GCTTXY(8, C2 + 20);

TEXT IC.PUT("--------------------
GOTOXY(9, Cl);
TEXT IO.PUT(" LAT");
GOTOXY(9, C2 - 5);

TEXTIO.PUT(" LONG");

GOTOXY(9, C2 4 20),

TEXT IO.PUTi" POSITION");
end PREPAREPCSITIONDISPLAY;

77

procedure PREPAP.ECOURSESPEED DISPLAY is
begin
CLEARLINE(DR, 3);
GOTOXY(8, Cl),;
TEXT IO.PUT("-------)
GOTCOjY (8, C2);,
TEXTI.U(----
GOTOXY(9, Cl);
TEXT IO.PUT(" COURSE");
GOTORY(9, C2);
TEXT IO.PUT(" SPEED");

end PREPARECOURSESPEEDDISPLAY;

procedure PREPAREBEARINGDISTANCEDISPLAY is

begin
CLEARLINE(DR, 3);
GOTOXY(8, Cl);
TEXTIO.PUT("-------)
GOTOXY(8, C2 - 5);
TEXT IO.PUT(----------
GOTORY(8, C2 + 20);
TEXTIQ. PUT"----
GCTQXY(9, Cl);
TEXTIO.PUT(" ERG");
G-OTORY(9, C2 - 5);
TEXT IO.PUT(" DIST");
GOTOXY(9, C2 + 20);
TEXT IO.PUT(" TO WP");

end PREPAREBEARINGDISTANCEDISPLAY;

procedure PREPARESCREEN is
begin

INITSCR;
CLEARSCREEN;
GOTOXY(I, 27);-

TEXTIO.PtT("I NS S I M UL ATO0R");
GOTCX-Y(2, 1);
TEXTI0-.PUJT(DASHLINE);
GOTCXY(14, 1);
TEXTI0.PUT(DASP._LINE);
G=TXY(lE, Cl);
TEXTIO.PtJT("ENTEF / UPDATE");
GOTSX(lE, 02);
TEXT I0..PUT ("DISPLAY";
'ZCTCXY17, 01);
TEXT IC-.PtJT("----------------
GOTOXY (17, C2) ;
TEXT IC. PUT (----------------
GOTOXY(19, Cl);
TEXT IO.PUT("[1J PRESENT POSITION");
GOTOXY(20, Cl);
TEXTIO.PtJT("E2J WAYPOINT");
GOTOXY(21, Cl);
TEXTIO-.PUT("[31 COURSE");
GOTORY(22, Cl);
TEXT IO.PUT("(43 SPEED");
GOTOXY (2 3, C1) ;
TEXTIO.PUT)"j5J STEER TO: WAYPOINT");

GOTOXY(l9, C2);
TEXTIO.PUT(" [6) PRESENT POSITION");
GCTOXY (2 0, C 2) ;
TEXT lO.PtT"K) WAYPOINT");
GODTOXY(21, C2);

78

TEXT IO.FUT("(8] COUSE / SPEED");

GOTOXY(22, C2) ;
TEXT IO.PUT("[91 BEARING I DISTANCE");

end PREPARE SCREEN;
end TERMINAL;

79

-- UNIT NAME data sto.ada

-- CSCI NAME

-- UNIT DESCRIPTION data structure to store data in tasks

-- UNIT SPS REFERENCE
-- UNITCALLING SEQUENCE

-- EXTERNAL UNITS CALLED

-- INPUTS

-- OUTPUTS

-- CREATED 1 15 January 1989

-- AUTHOP I herbert guenterberg
- DATE ------------ AUTHOR -------- REVISION # -- PR # .--- TITLE

-- This package supplies the necessary data structure to store data in a way,
-- that allows more than one task to access these data, without the risk of
-- accessing invalid data, or more than one task trying to modify the same
-- data at the same time. The implementation is generic to allow for different
-- data types to be sto,.ed.

-- The algorithm was taken from: David A.Watt and others; Ada Language and
-- Methodologie; Prentice Hall; 1987

generic
type ITEM TYPE is private;

package DATA STOPAGE is

task type BUFFEP is
entry STORE(ITEM : in ITEM TYPE);

entry RECALL(ITEM : out ITEm TYPE);
end BUFFEF;

end DATA STOPAGE"

pazkage body DATA STOPAGE is

task body B'JFFEP is

DATUr' : ITEM- TYFE;
be in

1CoF
sele ot

accept STjRE (ITEM : in ITEMTYPE) do

DATUM := ITEM:

end STOPE;
or

acceFt RECALL (ITEM : out ITEMTYPE) do

ITEM := DATUM;

end RE tALL:;
end select;

end loop;
end BUFFER;

end DATA STORAGE:

80

LIST OF REFERENCES

[1] Grady Booch, Software Engineering with ADA, The Benjamin/Cummings
Publishing Company, 1986.

[2] M.T.Devlin, introducing ADA: Problem and Potentials, USAF Satellite Control
Facility, unpublished report, 1980.

[3] Hank Raum, Design and Implementation of an Expert User Interface for CAPS,
MS Thesis, Naval Postgraduate School, Monterey, CA, December 1988.

[4] Dan Galik, A Conceptual Design of a Software Base Management System for
CAPS, MS Thesis, Naval Postgraduate School, Monterey, CA, December 1988.

[5] Laura Marlowe, A Scheduler for Critical Time Constraints, MS Thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

[6] Charles Altizer. Implementation of a Language Translator for CAPS, MS Thesis.
Naval Postgraduate School, Monterey. CA, December 1988.

[7] Mary Lou Wood, Runtime Support for Rapid Prototyping, MS Thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

[8] Roger Thorstensen, A Graphical Editor for CAPS, MS Thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

[9] Valdis Berzins. "Software Engineering", class notes provided at Naval

Postgraduate School, Monterey. CA. Spring Quarter 1988.

[10] ADA Language Reference Manual ANSI'MIL-STD-1815A.

[11] David A. Watt, Brian A. Wichman and William Findlay, ADA Language and
Methodology, Prentice Hall, 1987.

[12] Grady Booch, Software Components with ADA, The Benjamin/Cummings
Publishing Company, 1987.

[13] V. Berzins, Luqi Semantics of a Real-Time Language, in Proceedings of IEEE
9th Real-Time Symposium, Refereed Paper, Huntsville, AL, December 6-8, 1988.

[14] Luqi, V.Berzins, Rapidly Prototyping Real Time Systems, iEEE Software,
pp 25-36, September 1988.

1151 Luqi, Handling Timing Constraints in Rapid Prototyping, in proceedings of 22nd
Annual Hawaii International Conference on System Sciences, Refereed Paper,
Kailua-Kona, Hawaii, Januar 1989.

81

[16] Luqi, V. Berzins, Execution of a High Level Real-Time Language, in Proceedings
of IEEE 9th Real-Time Symposium, Refereed Paper, Huntsville, AL, December
6-8, 1988.

[17] Luqi. V. Berzins, Execution of a High Level Real-Time Language, in Proceedings
of IEEE 9th Real-Time Symposium, Refereed Paper, Huntsville, AL, December
6-8, 1988.

[18] Jack Schwartz, Presentation at the CPS/CPL Program Briefing, Vienna, Virginia,
21 February 1989 by DARPA/ISTO

82

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Navar Research
Office of the Chief of Naval Research
Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Ada Joint Program Office
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

5. Naval Sea Systems Command
CAPT Thompson
National Center #2. Suite 7N06
Washington, D.C. 22202

6. Office of the Secretary of Defense
COL Green
STARS Program Office
Washington. D.C. 20301

7. Office of the Secretary of Defense
R&AT/S&CT, RM 3E114
STARS Program Office
Washington, D.C. 20301

8. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

9. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

83

10. Navy Ocean System Center
Attn. Les Anderson, Code 413
San Diego, California 92152-500

11. National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Tom Keenan
Washington, D.C. 20550

13. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

14. Office of Naval Research
Computer Science Division. Code 1133
Attn. Dr. R.Wachten
800 N. Quincy Street
Arlington. Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Dr J. Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software
Attn. Dr. Ted Lewis
Oregon State University
Computer Scien', Department
Corvallis, Oregon 97331

19. University of Texas at Austin
Computer Science Department
Attn. Dr. Al Mok
Austin. Texas 78712

84

20. University of Maryland
College of Business Management
Tydings Hall, Room 0137
Attn. Dr. Alan Hevner
College Park, Maryland 20742

21. University of California at Berkeley
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 94720

22. University of California at Los Angeles
School of Engineering and Applied Science
Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 20742

24. University of Maryland
Computer Science Department
Attn. Dr. N. Roussapoulos
College rark, Maryland 20742

25. Kestrel Institute
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto. California 94304

26. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge. Massachusetts 02139

27. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

28. University of Minnesota
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. Slagle
Minneapolis, Minnesota 55455

85

29. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois
Department of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign. Illinois 61801

35. University of Massachusetts
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst. Massachusetts 01003

36. University of Pittsburgh
Department of Computer Science
Attn. Dr. Aifs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

86

38. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DAF.PA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington. Virginia 2209-2308

44. MCC Al Laboratory
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF
JOS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

47. University of California at San Diego
Department of Computer Science
Attn. Dr. William Howden
La Jolla. California 92093

48 University of California at Irvine
Department of Computer and Information Science
Attn. Dr. Nancy Levenson
Irvine, California 92717

49. University of California at Irvine
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

50. University of Colorado at Boulder
Department of Computer Science
Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

87

51. Santa Clara University
Department of Electrical Engineering and CompLt',3r Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

54. Dr. Bernd Kraerner
GMD
Postfach 1240
D-5205 Schloss Birlinghaven
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

56. Dr. Robert M. Balzer
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

57. U.S. Air Force Systems Command
Rome Air Development Center
Attn. Frank Lamonica
Griffis Air Force Base, New York 13441-5700

58. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59. Commanding Officer
GENAVAIRWING 3
Feuerweg 6
2859 Nordholz. West-Germany

60. LCDR H. Gunterberg
GENAVAIRWING 3
-Stab Fliegende Gruppe-
Feuerweg 6
2859 Nordholz. West-Germany

88

61. Commanding Officer
KdoMFOSys
Wibbelhofstr. 3
2940 Wilhelmshaven, West-Germany

89

